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1 Introduction

Motivation for the design of AMPL originated in the consideration of data-flow languages and

experience with hardware design. Since the inception of digital electronics, hardware designers have

designed interpreters, real-time control systems, and data-processing systems which utilize

thousands of computing elements, all operating in parallel. Data-flow computers are an approach to

achieving this level of parallelism in a programmable machine. Data-flow programs are normally

restricted, in that only functional or "stateless" programs are allowed. The value of a "variable"

cannot be changed since values are used to synchronize computation. In AMPL, networks of

computing elements can be interconnected to perform computation like the nodes of data-flow

machines, but like hardware elements, nodes can have state. Not only does this allow operations with

side-effects, but storage can be distributed and maintained at the site of computation rather than in a
"structure processor" [1] or other special storage unit as required by a data-flow machine.

AMPL is not designed for the implementation of systems which must survive hardware and software

errors in order to provide reliable service over extended periods of time. As in early algorithmic

languages for uniprocessors, little attention is paid to issues of exception-handling and error

recovery. AMPL is machine-independent and can be implemented on a variety of multiprocessor and

computer network structures. Since AMPL is an experimental language, it has intentionally been kept

simple and small. A richer syntax and additional features would be expected of a production

language.

1.1 Language features

The language is based on the use of message passing for both communication and

synchronization. Shared memory is not available. The language provides for the dynamic creation of

processes, the ability to pass references to processes through messages, and garbage collection of

processes. AMPL is a strongly-typed language, and borrows heavily from Modula [371 and Pascal

[36], using a similar syntax and also restricting the use of dynamic structures to simplify storage

allocation [35]. Its parallel processing facilities are descendents of CSP [19], although substantial

changes have been made, for example, to allow dynamic process creation.

A short example of an AMPL program is given in Figure 1. This example is presented here only to

give the reader an idea of what the language is like; details of the language will be explained in

Section 4. The program adds 10 pairs of numbers and prints the results. Two processes are used In

addition to an output process predefined by the language. One process generates numbers to be
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added, and formats the output. The other process actually performs the additions, returning results

to the formatting process. Figure 2 illustrates the run-time structure and communication paths of this

program.

type relportinteger = refport integer

module main; {this process created automatically)
port

SumPort: integer;
var

sum, h integer;
adder: refmod AdderMod,

begin {add some numbers using an instance of AdderMod)
adder: = create(AdderMod, Self.sumport); {parameter tells I
i: = 1; {where to send results)
whilei< 10 do

send i to adder.APort;
send 100 to adder.BPort;
send i to Wrint; {print i}
send' + 100 = 'to WrStr; {print a string)
accept SumPort(sum); {get sum of i + 1001
send sum to Wrint; {print sum)
send 1 to WrLn; {print 1 newline)
i:i 1+
end;

end;

{the following module adds two integers and sends the sum to result:)

module AdderMod(result: refportinteger);
port

APort: integer(I); {operands arrive one at a time)
BPort: integer(1); { so buffer size is set to 1 1

var
a, b: integer;

begin
while true do

accept APort(a); {get oierands... }
accept BPort(b);
send a + b to result; (...return result)
end

end

Figure 1: A simple AMPL program which adds 10 pairs of numbers and prints the results.



3

AdderMod

Main

1 . Aport - 100 +

SumPort pr

Write

WrStr

Wrint trn

WrLn

Figure 2: Run-time structure of the program presented in Figure 1.

1.2 Implementation

AMPL has been implemented on the Cm* multiprocessor [33] at Carnegie-Mellon University. The

compiler is written in Bliss-36 and runs on a DECsystem20 computer. The compiler translates AMPL

source programs into Bliss-11. After compiling the Bliss-11 code, the program is linked with the

AMPL run-time system (also written in Bliss-11) and loaded under the Medusa operating system on

Cm*. The implementation is complete except for a few features which are not interesting from. a

research standpoint; for example, enumerated types are not implemented.

1.3 Organization

A discussion of some issues in message passing is presented in Section 2. In this section, the

semantics of various proposed and existing languages are explained and compared to the design of

message passing in AMPL. Although communication mechanisms involve the most important design

decisions, a number of other aspects of the design are important. These remaining issues are

discussed in Section 3. In Section 4, the syntax and semantics of AMPL are presented. This section
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also points out the minor differences between the AMPL design, and its implementation on Cm*. The

run-time system is as large as the compiler and considerably more complex, owing to the parallelism it

supports and the functionality provided. Section 5 describes the design and implementation of the

AMPL run-time system. The compiler is fairly straightforward except for the fact that it generates

Bliss-11 rather than object code. A short discussion of the compiler appears in Section 5.7. A

number of programs have been written in AMPL to exercise the implementation and to collect

performance data. The objectives, instrumentation, experiments, and results are presented in

Section 6.

2 Message-passing schemes

Many proposals have been made for language constructs which provide synchronization and

communication in parallel programs [2, 5, 7, 8, 12, 15, 18, 19, 30]. Message-passing is an attractive

basis for a parallel language because it combines the two notions of synchronization and

communication. Since some sort of explicit synchronization is required whenever interprocess

communication takes place, it is difficult to overlook a transaction that requires synchronization. If

messages are buffered automatically, it is easy to construct programs which are synchronized by

data-flow rather than control-flow.

The design space for a message-passing system is large. Some of the issues addressed in

designing AMPL are stated below. Further discussions can be found in the papers referenced above.

Comparative studies by Bloom [4] and Gentleman [14] are also relevant. Bloom develops a

methodology for comparing synchronization schemes and applies it to monitors, serializers, and path

expressions. Gentleman discusses many issues of message passing, with an emphasis on message

passing in the THOTH operating system.

2.1 Ports

In AMPL, messages are sent from a sender to a port which belongs to a receiver. Only one receiver

can receive messages from a given port, and that right cannot be transferred. This decision

eliminates a level of indirection (mapping from ports to receivers). A port with "transferable

ownership" can be simulated with an AMPL process.

A design with output ports as well as input ports was also considered. Output ports could be

dynamically connected to input ports, and send statements would specify only the output port. This

approach has the advantage that a structure of interconnected processes can be constructed without
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including knowledge of the structure in the process declarations. Instead, the interconnection can be

performed by a process external to the structure.

This strategy has some nice properties, but after writing some small programs, it was found that

ports would be reconnected frequently, leading to confusing programs. In practice, parameters and

variables can be used to simulate output ports in many cases.

2.2 Synchronization

The expression of synchronization constraints is an important concern. In AMPL, as with many

message-passing systems, all synchronization is accomplished by sending and receiving messages.

Bloom [4] categorizes synchronization constraints as either exclusion or priority constraints, and

notes that these constraints are expressed in terms of several types of information, for example, the

operation requested and the local state of the receiver of the message. Another view of

synchronization is in terms of sorting.

2.2.1 Sorting

Synchronization implies that some messages will be delayed while others are accepted; that Is,

messages to a process are acted upon according to some ordering. Determining the order in which

messages are received is a form of sorting. In AMPL, two mechanisms are available for sorting

messages at the receiver. First, messages are sent to ports associated with the receiving process.

Normally, a separate port is associated with each operation so that messages will arrive sorted by the

requested operation. Second, messages are queued in chronological order. While this may not seem

like sorting at all, it is actually quite a useful property. It simplifies the task of fairly servicing requests.

Furthermore, if messages are received in the order in which they are sent, the sender can sometimes

avoid waiting for replies, thus increasing parallelism and decreasing message traffic.' We will have

more to say about this in Section 2.3.

2.2.2 Selecting messages

Sorting messages into ports does not fully specify the order in which messages are received;

additional constraints may be applied. Selection of a port from which to receive a message can be

accomplished in two ways. Conventional control-flow statements (if-then-else, while-do, etc.) can be

used to select a port and an accept can then be performed on that port. An accept will delay the

process if no message is present.

Now consider the case where the programmer wants to accept the first message to arrive at either
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of several ports. One solution is to poll the status of the ports, but this can be very inefficient. The

problem is solved with a nondeterministic select statement. This statement lists a number of

alternatives, each of which specifies one or more ports and enabling conditions which must be met in

order to accept a message from that port. The enabling conditions only need to be reevaluated when

a message is received (the time at which conditions may change). Otherwise, the process is

suspended.

There are a few more details pertaining to select statements in AMPL. Since AMPL has no shared

variables, enabling conditions can only change when a message arrives. The enabling conditions

may involve tests of whether a port is empty (no messages waiting) or ready (at least one message

waiting). There is no primitive corresponding to the COUNT attribute of Ada which would tell how

many messages are waiting in a queue. Therefore, conditions are only reevaluated when a message

arrives at an empty port. Further optimization can be performed to minimize the number of

reevaluations by marking ports on which the enabling conditions depend. The process reevaluates

conditions only when a new message arrives at one of the marked ports, and the port is empty.

(These implementation concerns are in one sense irrelevant to language design; however,

performance can be greatly affected by small changes in the definition of the language. We feel it is

important to assess the performance cost of various design decisions.)

In AMPL, select statements are fair. For a given select statement, preference is given to the least

recently selected alternative whenever several alternatives are enabled. This decision was made so

that we would have the opportunity to study its effect on the implementation and program behavior.

Another common form of synchronization arises when a program must wait for a number of

operands to become available. Both select and accept statements allow the programmer to specify

a list of ports from which to accept messages, rather than just one. This is useful in writing data-flow

programs where multiple arguments to a function arrive as messages from several sources. In the

case of accept statements, this notation is essentially equivalent to a sequence of accept statements.

In the case of select statements, however, if several port3 are listed in an alte?,.ative, then the

alternative is not enabled until all ports have waiting messages.

2.2.3 Sorting and selection in other languages

Monitors [18] provide priority queues which allow sorting based on values other than time. Priority

queues are not easily simulated in languages without them, but no priority mechanism is included in

AMPL because the additional language constructs and implementation effort did not seem to justify a

feature that would rarely be used.
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IPC [30,31] allows messages to be "previewed" before receiving them. The AMPL programmer

can always accept the message into a holding variable for examination before performing further

operations. The preview mechanism is more useful in IPC where type information is sometimes

desired before the data is received, but in AMPL messages are strongly typed (discussed below) so

this information is already known.

Ada [12] provides mechanisms similar to those of AMPL, but the select statement of Ada evaluates

enabling conditions only once at the beginning of the statement's execution. This is certainly more

efficient for some applications, but is not as general as the reevaluation scheme of AMPL. Is the

added power worthwhile? None of the examples coded in AMPL for performance measurements

required this generality. On the other hand, efficient evaluate-once code could be generated for all of

our examples as an optimization. Determining that this optimization is possible is a simple task for the

compiler. Therefore, while the AMPL scheme may be used only rarely, it can be provided at little or no

cost in performance.

Ada does not define the choice of alternatives in select statements when several alternatives are

enabled. CSP defines the choice as random or nondeterministic. AMPL's "fair" policy is more

difficult to implement, but provides more safety to the programmer. The policy of all three languages

can always be modified by placing more constraints in the enabling conditions of each alternative.

In Ada, it is difficult to wait for and receive a collection of arguments for a function from different

sources. The Preliminary Ada Reference Manual [20] states "To wait for several events to have

happened merely requires a sequence of accept statements." Unfortunately, this strategy cannot be

used to accept arguments in the order in which they become available, and the processes supplying

the arguments will not resume execution without delay. Since Ada does not provide buffering, this

sort of synchronization is awkward. *MOD [81 provides buffered ports, but there is no equivalent of a

select construct to allow conditional waiting on multiple ports as in Ada and AMPL.

2.3 Send semantics

Another set of issues relates to the question of buffering messages. AMPL buffers messages so

that a sender need not block waiting on the receiver. The primary motivation for buffering is to

increase parallelism. Even if a reply is required, the sender can often do useful work before getting

the reply. Another reason for the inclusion of buffering is that it is used frequently. While buffering

could be implemented at the language level, it would not be as efficient as an implementation at the

system level.
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AMPL send statements are defined so that a message is delivered to a port before the sender

continues. Delivery of a message means putting the message in a chronologically ordered queue.

The sender does not wait for the receiver to remove the message from the queue. There are two

reasons for this delivery wait. First, since messages are ordered by arrival times, this wait is

necessary to order messages by send times. The following property is c'ained:

If a send to a port completes before another begins, the first message sent will be the
first one received.

In the case where the sends are from the same process, more efficient protocols can maintain a

chronological ordering, but consider the case illustrated in Figure 3. Suppose process A wants to

deliver a message to port P after which Process B will deliver a message, and these messages must

arrive in order. Suppose further that send statements do not wait for delivery. Now, after Process A

sends to port P (message 1 in the figure), A instructs Process B to send a message by sending

message 2. B responds by sending message 3. But wait! Message 1 may not have arrived at Port P

since Process A never waited for its delivery. In AMPL, Process A cannot proceed until message 1 is

delivered, so no race condition can arise. This sort of synchronization is used only occasionally in
AMPL programs, but failure to wait for delivery could result in unreliable and very mysterious program

behavior. Waiting for delivery also facilitates flow-control. If the buffer at the receiver is full, the

message can be discarded since the sender is suspended with a copy of the message. A complete

description of the message-passing implementation is given in Section 5.4. This section also

discusses an optimization to avoid delivery waiting while still providing the same synchronization and

flow-control capabilities. In any case, a process can have only one undelivered message outstanding,

so this decision can potentially reduce parallelism by blocking processes unnecessarily.

Ada and CSP do not have any visible buffering of messages, so the synchronization and flow-

control problems do not arise. With IPC, reply messages would be required to avoid the

synchronization problem described above. Flow-control is provided by a more elaborate mechanism

designed for greater efficiency in a network environment.

2.4 Naming

Designs vary greatly in the manner in which sources and destination for messages are specified. At

one extreme is CSP in which both sources and destinations are statically defined in the source code.

At the other extreme are designs like ITP (341 which is an attempt to allow the programmer great

freedom in specifying (or leaving unspecified) both sources and destinations of messages. AMPL

takes an intermediate position. Since processes can be dynamically created, names must also be

created dynamically. Initially, only the process name is created and available to the creator. Port
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Figure 3: Two processes sending ordered messages to a single port.

names may be generated from process names as follows. To reference port p of process A, the

programmer writes A.p. Process names and port names are full-fledged types and may be assigned

to other variables, transmitted in messages, etc. The implementation and representation of port and

process names are discussed in Section 5.3; the interaction of naming with the implementation of

abstract types is discussed in Section 3.3.

A receiver names only the port in an accept statement; there is no choice of sender. On the other

hand, the sender must know the name of the receiver. Port names may be thought of as capabilities

to perform send operations on port objects. It was desired to keep AMPL simple while permitting the

dynamic creation of computing structures or networks. The simplicity requirement is met by having

only one mechanism for generating names, and one way to specify the sender and receiver of a

message. Broadcasting messages, receiving on the basis of a senders identity, or receiving an array

of messages from an array of ports are not primitive operations in AMPL.

Ada illustrates a slightly more elaborate naming scheme. Processes (Ada tasks) can be statically

declared or dynamically created. The statically declared tasks can be named directly, whereas

dynamically created tasks are named by using access variables. Ada also provides arrays of entries

(an Ada entry is analogous to an AMPL port.) In preliminary Ada, and in CSP, all processes are

created statically.
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Manipulating names in AMPL is like the use of pointer variables in several ways. Pointers are

similarly general, allowing the creation of arbitrary structures. Pointers are also difficult tc. jse, and

are typically used only when other primitive structures (e.g. arrays and records) are inadequate.
Usually, the programmer uses pointers to create a regular structure such as a linked list, a tree, or a

graph with special properties, but current programming languages do not have adequate means of

expressing these structures. The best that can be done is to give the programmer a set of general
primitives so that the desired structure can be constructed. Many AMPL programs also have simple

regular structures, but wi do not know how to concisely express these structures in a general way.

Therefore, AMPL programs are free to pass and copy names without restraint. In practice, this

over-generality has resulted in almost no programming errors; however, we must note that only small
programs with well thought-out structures have been implemented.

2.5 Invoking operations

A common use of a message is to invoke a function to be performed by the receiver. This can be

likened to a monitor call or an operation on an abstract data type. Several decisions can be made to
simplify this use of message passing. First, a process can have many ports, where each port

corresponds to a particular operation. Thus, the operation does not need to be decoded by

examining the message's content. In AMPL, ports are associated with instances of processes. That
is, when a process is created, a set of ports are also created for the process. Only that process can

receive messages from these ports, but any process with a reference to a port can send to it.

Often, messages are used to invoke operations which produce a result. Several languages have

built.in mechanisms for returning results to the sender of the original message. There are many ways

to facilitate the programming of reply messages, and it was not clear which if any to choose when

AMPL was designed. It was decided to provide the necessary primitives, and not to provide built-in

facilities for sending replies. As a result, programs are not biased toward a particular construct, and
programs can be analyzed for common sequences of primitives that might indicate desirable

properties of a built-in reply facility. The ability to send a port reference in a message is used

frequently to specify a reply port for the result.

In IPC, every message contains a standard field for specifying a reply port. IPC has not yet been

integrated with any languages to the extent that a single construct can invoke an operation and

obtain a result; however, functions can be written to hide the necessary operations from the

programmer.
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An example of a language with built-in reply mechanisms is *MOD. In *MOD, the same syntax is

used to invoke procedures, create processes, and send messages. All of these actions can optionally

return a value, in which case the invoker waits for the results. A limitation of *MOD is that in cases

where a result is required, in response to a message, the result must be generated and returned from

within the same syntactic construct that receives the message. The receiver cannot, for example,

store the message away and come back to it later, or request another process to return a result.

In Ada, a rendevous may return a result by modifying var parameters. This does not allow entry

calls to be made directly from within expressions, but a function can be defined that performs the

entry call and returns a result.

Distributed Processes (DP) [15] bases all process communication on a construct similar to Ada's

entry call. The caller is always suspended until the call completes. CSP has no mechanisms for

sending a result, although naming in communication constructs is symmetric and static, so there is

never a problem of determining where to send a reply.

A reply facility would greatly enhance the readability of some AMPL programs. Section

5.4 illustrates how replies could lead to greater efficiency at run-time by reducing the number of

messages.

3 Other language design issues

3.1 Types and storage management

AMPL is a strongly-typed language. In particular, ports are typed, and messages must have types

that match those of their destination ports. Safe garbage collection in AMPL is made possible by

strong typing. Typing of messages sometimes interacts undesirably with the sorting mechanisms

described in Section 2.2.1. To illustrate the problem, refer to Figure 3 and supppose that message 3

sent by process B has a different type from that of message 1, but process C, the receiver, must

receive both messages in order. For example, message 1 may be the last data i 'essage of a stream

and message 2 may be an end-of-stream message. Since the messages have different types, two

ports must be used, say P1 and P2 (see Figure 4). With the mechanisms presented so far, there is no

way to guarantee that messages are received in order unless extra synchronization messages are

sent. The problem is that messages are sorted first by ports and then by arrival time. We want to

receive messages from P1 and P2 sorted first by arrival time and then by ports. This alternate sorting

order can be indicated in port declarations. The syntax will be explained in Section 4.6. This
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technique is illustrated in Section 6.9. An alternative solution is to provide union-types, so that the

data message (message 1) and end-of-stream message (message 2) could be sent to the same port.

In a larger language, this would probably be the best choice, since union-types have other uses and

are therefore more general.

Figure 4: Synchronization of messages arriving at two ports.

Several aspects of typing in the AMPL design simplify the storage-allocation problem. The typing

system is restricted so that the size of all objects are known by the compiler. AMPL does not provide

procedures (although procedures may be simulated with other mechanisms). Storage allocation is

discussed further in Section 5.7.1. rhe storage-allocation strategies in turn affect the design of

garbage collection.

The absence of procedures allows the maximum stack size of a process to be determined by the

compiler. The maximum size for a given process is bounded and depends only on static properties of

the code. Heap storage is required only for processes, since variables cannot be allocated

dynamically and there are no "pointer" types in AMPL.

A more elaborate and flexible set of types as illustrated by modern programming languages (e.g.

Ada) is desirable for many applications. The typing system of AMPL was chosen primarily to keep the

=A

. . . . . .. . . . • . . . . , . .. . . . . ... .. . . . . . . . . . . . . . . . .



13

implementation simple; it provides enough power to allow interesting parallel programs to be written

without overly complicating the implementation.

An example of an implementation which has devoted much more attention to the storage-allocation

problem is Mesa [25]. Although Mesa is implemented on a uniprocessor, Mesa programs can spawn

processes and coroutines which require efficient allocation of heap objects. In fact, all procedure

activation records are allocated from heap storage; thus, stacks can be of arbitrary size, and storage

is only allocated as needed.

3.2 Creating processes

Processes are created dynamically in AMPL. A built-in function, create, is called to create a

process and pass parameters to it. The value of the function is a reference to the created process.

As discussed in Section 2.5, AMPL has no built-in mechanisms for obtaining replies, so a functional

syntax was chosen for the create primitive.

An alternative syntax, which is more consistent with AMPL message-passing facilities would be to

use a language-defined port called create. Messages would be sent to the create port to specify the

process to be created, the parameters for the process, and a reply port to which a reference to the

created process would be sent. This alternative approach would allow the creator to continue

executing in parallel with the creation of the new process, but the overall time to create a process

would be slightly longer.

3.3 Encapsulation

Data abstraction is an important element in many current languages. Ordinarily, abstract type

representations are hidden or encapsulated through the use of scope rules. Access to the type is

then provided through procedures which are declared to be visible to users of the type. AMPL

processes may be viewed as implementations of abstract types. The variables in a process are

"hidden" objects since thay are not shared. On the other hand, the ports belonging to a process can

be referenced by other processes. Abstract operations are invoked by messages to the

corresponding port. The representation of the type is encapsulated by the process.

Abstract types which use many processes can also be constructed. The simplest way to do this is

to define a top-level "interface process" to serve as an interface between users of the type and the

type implementation. The interface process, when created, in turn creates representation processes

which together form the representation of the type. If the interface process does not distribute
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references to the representation processes, then these processes will be hidden from the users of the

abstract type. Thus, encapsulation is performed operationally rather than through the use of special

scope rules.

In more elaborate implementations of abstract types, it becomes necessary to control access on a

more detailed level. The operations visible to a user can be restricted by providing the user with

names of only a subset of the ports of a process. (While possession of a process name implies the

ability to name all ports, possession of a port reference does not allow the owner to name the

corresponding process.) Figure 5 illustrates this concept. The abstract type is a data-base,

implemented with many interconnected processes. A single manager process is originally created to

instantiate the data-base and grant access to it. The manager has only one port, used to gain access

to the data-base. Users who want to use the data-base send a request to the manager, who responds

by creating a connection process and returning references to a subset of the connection process's

ports. Messages from the users to these ports cause reads and writes on the data-base. Notice that

the user has no access to the data-base except through his connection process, and only ports made

available by the manager are accessible. The manager is not a bottle-neck for data-base accesses,

since messages after the initial one are sent to connection processes.

3.4 Processor allocation

AMPL has no facility for specifying physical process locations. Processor allocation is performed

by the run-time system. Because processes do not share memory and interact via messages, it is

particularly easy to move processes from one processor to another. Thus, allocation can be varied

dynamically. Where there are large numbers of processors, it is difficult to know how and where to

locate processes, especially in programs which create processes dynamically. The philosophy

behind the design of AMPL is that programs should specify a high degree of parallelism, with fur more

processes than processors. This helps insure that the available parallelism will be utilized even

though the allocation of processors is less than optimal. The absence of shared memory means that

the set of variables used by a process is always known, so it is easy to arrange to keep variables

physically near the processor which accesses them. Very little research has been done relating to

processor allocation in this sort of system. The AMPL implementation has hooks to allow process

migration, but none is currently performed.
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Figu re 5: Process structure for a parallel data-base implementation.

4 Language definition

In this section, the syntax of AMPIL is defined with a BNF-iike notation. The semantics are defined

informally. The syntax definition is based on the machine- readable description which is fed to an

automatic parser generator (FEG) [131. Metasymbols used in the description are:

S< > :,=a ? • 1 1
Nonterminals are denoted by an arbitrary number of characters enclosed in angle brackets, e.g. Wx.

The meta- language constructs used are:
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{ <x> I <y> .• • either <x> or <y>
{ <x> }? ..... an optional <x>
{<x> ) +..... .. one or more occurrences of <x>
(x> )......zero or more occurrences of <x>
{ <x> }; + .... one or more occurrences of <x>, separated by semicolons
{ <x> ; ..... zero or more occurrences of <x>, separated by semicolons
{ <x> ), + .... one or more occurrences of <x>, separated by commas
{ <x> },......zero or more occurrences of <x>, separated by commas

Double quotes are used to indicate that a meta-language symbol is to be treated as a language

symbol, e.g. "I". The remainder of the meta-language should be obvious to anyone familiar with

BNF.

Throughout this section, a number of details about the language and its implementation are printed in small text

like this. The reader may wish to skip these details.

4.1 Lexical rules

(letter> :: A I B I C I Z.. I Z a I b I c j ... z

<digit> ::- 011 2131... 1 9

<stringchar> :: " I "" I# I &l ( I ) I " I
+ 1 - . / : ; I "<" J ">"

Q IE I t ( I }
- I <digit> I <letter>

<identifier> ::- (letter> ( <letter> I <digit> }

<integer> ::- <digit> }+

<string> ::- ' ( <strlngchar> I ''
The lexical rules are similar to those of Pascal [36], except real numbers are not allowed. A

stringchar is a blank or any printing ASCII character other than the single quote character. To

simplify the implementation. the language has no facility for constructing strings with non-printing

characters (other than blanks). Within a string, a single quote is indicated by two adjacent single

quote characters. Comments are arbitrary strings enclosed in braces or the symbols (s" and "1).

The following are reserved words in AMPL:
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accept and array
begin const div
do else end
if mod module
not of or
port record refmod
refport select send
then to type
var when while

In this report, keywords will always be printed in boldface.

4.1.1 Examples

X
Master
Abc 123xyz
10
4096
{ this is a comment }
( this is a comment )

4.2 Programs

<program> ::= ( <constant declarations> }?
( <type declarations> }?
<module declarations>

<module declarations> ::= { <module definition> };+

A program declares global constants and types, and a collection of modules. Notice that it is not

possible to declare variables at this level. A module is actually a special type, and serves as a

template or a type declaration for a process. Since modules are not processes, there must be a way

of instantiating them. All processes must be explicitly created at run-time with two exceptions: (1)

system defined modules for I/0 are created automatically, and (2) an instance of the program-defined

module MAIN is created automatically.

A program must have a module called main. Omission of this module will not result in an error message from

the compiler, but will cause the linker to complain.

Figure 1 on page 2 is a short example of a complete program.
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4.3 Modules

The module declaration is the primary unit of program structure in AMPL. It defines constants,

types, ports, and variables associated with the module. A process, or module instantiation, contains a

collection of ports, storage for variables, a stack, and buffcrs for messages delivered to the ports.

<module definition> ::- module <Identifier>
( <parameter list> I?
(block>

A module definition includes an identifier, a parameter list, and a block. The identifier is a name for

the module and has a global scope. This identifier is used as an argument to the create function and

is also used in refmod type declarations. The optional parameter list implicitly declares variables.

These variables are initialized to actual values passed by the create function call to be described

later. The block is defined as follows:

(block> :: ( (constant declarations> }?
( <type declarations> }?
( <port declarations> }?
( <variable declarations> }?
begin ( ( <statement> }? }; end

Figure 1 has several examples of module definitions.

4.4 Constants

Constants are defined as in Pascal:

<constant declarations> ::a const ( <constant definition> }+

<constant definition> ::- <identifier> - <constant>

<constant> :: { { + I - }< i (identifier> I <integer> } I <string>}

The scope of constant identifiers is global if declared outside of a module, and local to the module

if declared inside the module. Forward references in constant definitions are allowed but are of

limited use since a constant cannot be an expression.

4.4.1 Examples

const
Nslaves = 4;
text = 'Hi there';
ArraySize = Nslaves,
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4.5 Types

AMPL has a limited number of types. As in Modula, there are no types which must be dynamically

allocated within module instances. Unlike Modula and Pascal, types need not be declared in any

particular order. Forward references and recursive types are handled properly.

<type declarations> ::- type ( <type definition> }+

<type definition> ::- <identifier> - <type>

<type> ::- ( <simple type> I <array type> I
<record type> I <ref~type> }

Types are equivalent if they are structurally the same. For arrays, the number of components must be

identical and the component types must be equivalent. For records, the types of corresponding fields

must be equivalent and the number of fields must match. Subrange types are all equivalent to type

Integer, but the implementor may assume that the value of a variable of a subrange type is bounded

by the constants specified in the type declaration. This assumption may be checked at run-time.

Reference types are equivalent if the referenced types are equivalent. No two modules are

considered equivalent; this is the only case where structural equivalence is not applied.

In the current AMPL compiler, structural equivalence is not implemented. It was decided that checking cyclic

structures was not worth the effort, given the experimental nature of the project. Straightforward name
equivalence was rejected because it requires more types to be declared by the user. Instead, a "relaxed" name

equivalence is used. The rules for equivalence are carefully defined to handle most cases of structurally

equivalent types without the need to handle cyclic types. The author does not recommend this scheme for any

language; however, rules are included here for users of the current compiler. Types are equivalent if

1. The types have the same name.

2. The types are array types and have the same size, and the component types are equivalent.

3. The types are either both refmod or both refriort types, and the referenced types are equivalent.

4. The types are subrange types. (Integers are considered a subrange type.)

A type declaration of the form "Type X = Y" where Y is a type identifier does not create a new type, that is, X and

Y are equivalent.

4.5.1 Simple types

<simple type> ::- ( <constant> .. <constant> I <identifier> }

Integer and Boolean are predefined types. True and False are predefined constants of type

Boolean.
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Currently, subrange types are treated as integers and no range checks are performed at run-time except for

array indexes.

4.5.2 Structure types

<array type> ::m array [ (simple type> ] of (type>

<record type> ::- record (field list> end

(Mield list> ::( field> };+

(field> ::- (identifier list> : (type>

(identifier list> :: i (identifier> },+

Arrays are single dimensional, but multi-dimensional arrays can be simulated easily using arrays of

arrays.

In the current implementation, record field identifiers must be unique across all record field identifiers in the

same scope. The compiler distinguishes the names internally, but uses the field names to generate Bliss-11

macros in the generated output. If two records have identical field names, the Bliss-11 compiler will complain that

two macros have the same name.

4.5.3 Reference types

<ref type> ::= ( refport I refmod ) (type>

A reference type can only refer to a module or a port, and variables of this type are initialized to a

special constant nil. Refmod values are only created by the function create, to be described in

Section 5.5. A refmod value is essentially a pointer to a process. A refport value is created by

applying a port name as a "field selector" to a refmod variable. For example, if M is a module with

port p, and V is a variable of type refmod M, then V.p is an expression yielding a retport type. (The

exact type will be refport U, where U is the type of port p.)

For refmod types, the type specified must be the identifier of a module.

4.5.4 Examples

type
RefMaster = refmod Master;
ReflntPort = refport integer;
SlavesType - array [1.. Nslaves] of refmod Slave;
AnswerType = record N, M: int ger;

Who: refmod Slave
end;
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4.6 Ports

<port declarations> ::a port (port definition> }+

<port definition> ::< { (port specification> ; I
( < (port specification> };+ ) ; }

<port specification> ::a

<identifier> (type> ( ((constant>) }?

Port declarations define ports through which messages are received. All identifiers in port

specifications are known globally so that, given a reference to a module, all ports of that module can

also be referenced. All other identifiers declared inside a module are local to that module. The first

form of port definition (a port specification followed by a semicolon) declares a port and optionally

gives a FIFO message queue length. The constant in parentheses specifies the number of messages

which will be buffered before senders are blocked. A reasonable default value is computed if the

constant is omitted.

The second form is a list of port specifications in parentheses. Messages sent to any of the listed

ports will always be received in the order of their arrival times. All messages in the list logically share

a single queue. (The implementor is free to use separate queues and timestamps, etc.) The size of

the queue is the maximum of any constants given in the port specifications. If no constants are

specified, a reasonable default value is computed. The use of this second form of specification is

explained in Section 3.1.

Declaration of a port within a module indicates that the port is to be instantiated whenever the

module itself is instantiated. Therefore, if the module is instantiated twice, then separate ports are

created for each process. Processes can only accept messages from their own ports. Any process

with a reference to a port can send messages to it.

4.6.1 Examples

port
P: integer(3);
NamePort: refmod Slave;
(data: integer (Nslaves); EndOfStream: boolean);

4.7 Variable declarations

<variable declarations> ::- var ( <variable definition> }+

<variable definition> ::- <identifier list> : <type>

Variable declarations are similar to those of Pascal. Like ports, variables are instantiated whenever

- - - - IIm. . ii . .



22

the module itself is instantiated. The variables are accessible only by the process which contains

them. No variables can be shared by multiple processes.

4.7.1 Examples

var
names: SlavesType;
/, J: integer;
owner: refmod Master;

4.8 Variable references

(variable> ::- 0 (identifier> <variable> [ <expression> J
<variable> . <identifier> }

The syntax for referencing a variable is like that of Pascal. The field selection (dot) notation also

serves to reference a port within a module as explained in Section 4.5.3. Every process has an

implicitly declared variable called self which is initialized with a reference to the process itself. In a

process which is an instantiation of module M, the type of self is refmod M. If module M declares a

port p, then self.p refers to the name of port p in that process.

4.8.1 Examples

X
X.Who
A (1
A[I][J[message. row)
self.ResultPort

4.9 Expressions

AMPL uses a standard expression syntax. The operator, listed in orderof increasing precedence

(with equal precedence operators on the same line) are:

or

and

not

( <- >- - > 0>
-

* / div mod

- (unary minus)

Operators are defined as in Pascal, except comparison operators (< <,= > = = > C>) are not defined

for Boolean arguments. Also, AMPL does not support floating point numbers. No operators are

defined on structures. The syntax for expressions is:
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<expression> ::- ( <conjunction> I <expression> or <conjunction> }

<conjunction> :: ( (negation> I <conjunction> and <negation> }

<negation> ::* (<comparison> I not <comparison> }

<comparison> ::= ( <sum> I <sum> <compare op> <sum> }

<compare op> ::u "<" I "<" I ">U" I I ">" I "<>"

<sum> :: < £ (product> I <sum> <add op> <product> }

<add op> :: ( + I - I

<product> ::- £ <factor> I <product> <mult op> <factor> }

<mult op> ::a ( * I div I mod }

(factor:> ::= (<term> I - <term> }

<term> :: O (<integer> I <string> <identifier> <actual list>
(<expression> ) I <variable> }

The expression syntax contains a production for function calls. Functions cannot be defined by the user, but

two system defined Tunctions, ready and create, are available. These will be described below.

4.9.1 Examples

3"' (-X + It.count)
X + 3 > ANl or ready(inport)

4.10 Conditional statement

<if statement> ::- if <expression> then ( ( <statement> }? };+
( else { ( <statement> }? };+ }? end

The expression must be of type Boolean. Notice that the statement is terminated by the symbol

end. Statement lists may follow the symbols then and else. Either or both statement lists may be

empty. The entire else clause is optional.

4.10.1 Examples

if I - MaxCol then A[l]: = B end
if flag then X: = 1

else if flag2 then X: = 2; Y: = 3 end.
end
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4.11 Iteration statement

<while statement> ::- while <expression>

do < ( (statement> }? };+ end

The expression must be of type Boolean. The iteration statement is also followed by the symbol

end, to mark the end of the statement list following do.

4.11.1 Example

while / < len do
ANI):= 0;1:= 1+ lend

4.1 2 Send statement

<send statement> ::- send <expression> to <expression>

The send statement is used to send messages to ports. The first expression is evaluated to yield a

value which becomes the content of the message. The second expression is evaluated to yield a port

reference. If the first expression is of type T, then the second exoression must be of type refport T.

The message is sent to the port, and the sending process suspends until the message is delivered to

the receiver, i.e., the message is copied into the destination port's message queue. This guarantees

that if a message is sent to a port after the completion of a send to the same port, the messages will

be received in the same order they are sent. (See also Sections 4.6, 2.3, and 5.4). It is an error to

send to a null port descriptor or to a process which has halted. In the event that the destination port

buffer is full, the sender remains suspended until the message can be delivered.

4.12.1 Examples

send + I to B.IntPort
send All] to X
send pat to self.back

4.13 Accept statement

<accept statement> ::= accept <accept list>

<accept list> ::< ( (accept item> },+

<accept Item> ::- <identifier> ( <variable> )
An accept statement is the simplest statement that receives a message or set of messages. The

identifiers in accept items must be port identifiers declared in the same module. Messages can only

be received by the process in which the port is declared. For the case with one accept item, a

message is removed from the indicated port's message queue and is assigned to the indicated

variable. If the queue is empty, the module instance suspends until a message arrives.



25

In the case where more than one accept item is present in the accept list, each port identifier must

be distinct. The process suspends until a message is present at each port's message queue. Then,

one message is removed from each queue and assigned to each variable in the order accept items

are listed. An accept statement with a list of accept items is identical to a sequence of accept

statements with one accept item each, except with a sequence of accept statements, some messages

may be accepted before all messages are present.

4.13.1 Examples

accept P(x) {take message from P and store in x}
accept Index(i), Value(Afi)] {use two messages to update an array)
accept Index(i); accept Value(Ali)]

{similar to previous example, but Index message may be accepted }
{ before Value message is available)

4.14 Select statement

<select statement> ::- select ( <alternative> };+ end

<alternative> ::- ( when <expression> }?
accept <accept list>
then ( { <statement> }? };+ end

The select statement is a generalized non-deterministic form of the accept statement. It allows a

process to act upon any of several message arrivals and to place constraints on which message is

accepted next. One and only one of the select alternatives is executed. An alternative is said to be

enabled when its conditional expression is true and a message is waiting in the queue for each port

specified in the accept list. Again, ports in the accept list must be distinct.

If no alternatives are enabled, the process suspends until an alternative is enabled. If one

alternative is enabled, messages are accepted as in the simple accept statement, and the

corresponding list of statements is then executed. If more than one alternative is enabled, the one

least recently executed is selected. This provides a fair choice in the sense that, if a given clause in a

given alternative is enabled repeatedly when the select is executed, then the alternative will eventually

be chosen. If no enabled alternative is the least recently executed, i.e. none have been executed at

all, then the choice is made arbitrarily.

There is-no restriction on the when expressions. However, since no variables are shared, the value of any

expression cannot change unless a message arrives at an empty message queue.

The function ready takes a port identifier (not a port reference) as its argument and returns true if
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the port has a non-empty message queue. Otherwise false is returned. A process can only examine

its own message queues. There is no direct way to determine the state of the ports of another

process. The ready function is useful for indicating priority in select statements and in avoiding

suspension when a message queue is empty.

4.14.1 Examples

The first select statement, when executed inside a loop, will implement mutual exclusion on a

shared piece of data. The second statement grants requests to read or write to shared data. Writers

have priority, and multiple readers are allowed:

select
accept read(reader) then

send data to reader end;
accept write(data) then end
end

select
when ReadCount = 0 accept WriteRequest(writer) then

send OK to writer;
accept WriteDone(writer)
end;

when not ready(WriteRequest) accept ReadRequest(reader) then
send OK to reader;
ReadCount: = ReadCount + 1
end;

accept ReadDone(reader) then
ReadCount: = ReadCount - 1
end

end

4.15 Call statement

<call statement> ::= <identifier> ( <actual list> }?

<actual list> ::- ( ( <expression> },+ )

The only built-in AMPL procedure is create. which takes a module name as its first parameter, and

module actual parameters in following parameter positions. The types of the actuals must match the
types of the corresponding module formal parameters. The values of the actuals are assigned to

formal parameters when the module is created. Otherwise, the formal parameters are regarded as

ordinary variables. The process executing the create is suspended until the creation is complete.
The created process executes the statement list in the block given in the module definition. The

process terminates after the last statement of the block is executed. A process also terminates if it is

suspended and no other process has a reference to it. Such a process will never be resumed. Create

may be called as a function in which case a refmod value is returned.
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In the current implementation calls to create may not be nested.

The programmer cannot define procedures in AMPL, but procedure calls can be simulated by

creating a module instance and waiting for a reply message containing results.

4.15.1 Examples

mret: = create(M, 1, y)
create(M, 1, y)

5 Implementation

AMPL is implemented on the Cm* multiprocessor. Although AMPL exploits many features of CmO,

the language was not designed specifically for this machine. Cm* consists of about 50 computer

modules in five clusters. Each computer module consists of an LSI- 11 processor, a local memory,

and a switch to couple the processor to its local memory. The switch can be programmed to direct

certain memory access requests to a high-speed mapping processor called a Kmap. The switch also

allows the Kmap to access the local memory. A Kmap is associated with each cluster, and Kmaps

communicate with each other over high-speed links. The resulting configuration allows processors to

access any memory location in the machine, but access times vary by an order of magnitude

depending on whether access is a local, an intracluster, or an intercluster memory reference.

The Kmaps contain high-speed horizontally microprogrammed processors which could best be

used as message processors in an AMPL implementation. Unfortunately, the programming effort

required would be very large, and the new microcode would be too large to coexist with either of the

available operating systems. For these reasons, it was decided to implement AMPL on an existing

operating system, Medusa [28].

While Cm* hardware is almost ideal for AMPL, the process and message-passing abstractions

provided by Medusa are poorly matched to our requirements. As a consequence, the AMPL run-time

system implements its own processes, ports, scheduling, and storage allocation. Mledusa processes

exist in separate address spaces and the smallest grain of protection provided by hardware is a

4096-byte page. The smallest process in Medusa is at least this large. At most 16 processes can be

created in any computer module and designers of Medusa intended that processes be rather static

entities. It was decided to use Bliss-11 coroutines to implement AMPL processes. This allows

processes to share an address space, and allows the run-time system to choose a process

representation that is optimized for AMPL processes. Since several AMPL processes can share a

single address space, there is no lower bound on process size due to hardware restrictions.
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5.1 Ports

Medusa has a fairly elaborate message-passing system. At first sight, Medusa seems like an ideal

base for AMPL because it emphasizes the use of message-based communication over shared

memory. Upon closer inspection, however, it is found that Medusa pipes are only remotely similar to

AMPL ports. First, pipe creation is a time-consuming operation due to protection, addressing, and

memory management problems handled by the operating system. One way to get around this

problem is to pre-allocate a large number of pipes in a commonly accessible place (Medusa's shared

descriptor list) and assign pipes to processes dynamically. Pipes would be reused rather than

destroyed. The shared descriptor-list allows a maximum of only 512 pipes, which would be too small

for many programs. Another problem with pipes is that if a pipe is full when a message is sent, the

sender is blocked. Assuming that AMPL processes are implemented as coroutines, what we want to

happen is the suspension of one coroutine, not the suspension of the Medusa process which is

responsible for executing many coroutines (AMPL processes). For these reasons, Medusa messages

cannot be used directly as AMPL messages.

On the other hand, Medusa pipes are used extensively as a base for the AMPL message-passing

facility and for communication in general. Messages are particularly convenient for invoking remote

operations in a distributed run-time system.

In spite of the overall cleanliness of Medusa pipes and messages for implementing a distributed

program, the use of global shared memory is used for some synchronization tasks. Medusa provides

a few memory operations like atomic increment, decrement, lock, and unlock, which execute much

faster than the message operations.

5.2 Process pairs

An ideal implementation of AMPL would use at least two types of processors. One would be

optimized to perform message-passing and resource-allocation functions, and the other would be

designed to efficiently execute AMPL programs. Earlier, it was mentioned that the Kmaps could

perform the communication functions. In our implementation, computer modules are used in pairs.

One processor in each pair is called the communication processor, or CP, and serves to create

processes, deliver messages, and perform garbage collection. The other processor is called the

application processor, or AP, and serves to actually execute AMPL programs. The CP and AP

interact closely and share the memory used for process frames. The run-time system is composed of

many logically identical OP/AP pairs (see Figure 6). These pairs could be physically implemented on

one computer module, but there are at least three reasons for not doing so. First, it is desirable to

--L . . . . ... L. . ...
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service incoming messages promptly to avoid letting a pipe become full. A full pipe might block some

other process and perhaps lead to deadlock. One solution is to use interrupts to notify the receiver

immediately, but Medusa does not provide a means of interrupting a process when a message arrives.

Secondly, while the total memory of Cm* is large, individual computer modules have a limited amount

of memory; typically about 40K bytes are available for programs and data. Separating the CP and AP

allows the code for each to reside on separate machines. Third, using two physical processors can

provide a large degree of additional parallelism, since message passing operations overlap other

computations. The decision to use processors in pairs rather than, say, one communication

processor for every two application processors was somewhat arbitrary. It turned out that some

programs saturate the CP and others saturate the AP, so the right mixture is defined to a large extent

by the nature of the AMPL program. Dynamic optimization of processor assignment would greatly

complicate the implementation.

While there is very close interaction and a high degree of communicaton within a CP/AP pair, the

interaction of one pair with another is much more limited. Communication between pairs is almost

entirely conducted via messages. While not always the most efficient organization, this approach has

the advantage of reducing complexity to a manageable level. If each CP were free to access the

process frames of each AP, many complex interactions could arise. Consider the following scenario:

Several CP's are delivering messages to a process. Another CP is simultaneously scanning the

process frame for references needed for garbage collection. A fourth CP is rescheduling the process

for execution after delivering a message, and a fifth CP is attempting to relocate the process to

another AP. The possibility for errors is large, and tracking down the cause of a failure by recreating

the preceding sequence of events may not be possible.

Now consider the situation where CP/AP pairs interact via messages. Each of the operations listed

above is requested by sending messages to the CP associated with the process. The CP receives one

request at a time, performs the operatior, and moves on to the next request. Each operation is

non-interruptable, and at most only needs to synchronize with the AP. It may seem that a great deal

of parallelism is sacrificed. Actually, each of the other CP's is freed to perform their own local tasks in

parallel. A further advantage of this message.based approach is locality. The CP must perform a

large number of memory operations on a process frame to deliver a message. Intracluster memory

accesses are about three times faster than intercluster accesses. By not splitting CP/AP pairs across

clusters, it is guaranteed that the memory operations will be fast. A second point of efficiency is the

elimination of locking and synchronization that would be required if process frames could be

accessed by many communication processors.
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Figure 6: Basic structure of the run-time system.

Message passing introduces some overhead. More data is moved and copied to pack, send,

receive, and unpack messages. Messages also take substantial amounts of Kmap processing time.

Because there are so many opposing factors, it is unclear how a shared memory approach would

compare to the present implementation, but it would certainly be less understandable.



31

5.3 Name space

A process or port name is defined as a reference to a process or port. A process is represented by

an entry in a process descriptor table (see Figure 7). A process name is therefore a reference to a

process descriptor table entry. Names of ports and processes are represented with two words as

shown in Figure 8. The first word is an index into a process descriptor table. The second wurd

contains a CP/AP pair index and an optional port number.

3

Process
Frame Frame
Pointer2

2 status

Word ,esc

Process Descriptor
Table

Figu re 7: The process descriptor table.

process index t
IIIIII l i 11111 m m j 2 Words

port number CP/AP index
I Ii I I I I I Il 1 2

16 Bits

Figure 8: Representation of a process or port name.

An interesting property of the representation is that, given a process name and a port index, a port
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reference can be immediately constructed. The port index is used to simply "fill in" the port index

field of the process name. This is how port selection is implemented. Port indexes are assigned by

the compiler.

To map a name to a process, the CP/AP pair index is used to locate the physical processor. The

process index is used to index a descriptor table located in memory shared by the pair. This table

provides the address of the process frame and a number of status bits. If the name is a port

reference, a port index is specified. The port index selects a port within the process frame. The name

space is larger than the anticipated maximum number of processes. When a process terminates, the

process frame is reclaimed immediately, but the descriptor table entry is retained. The status in the

table is marked halted so that any future attempts to deliver messages to the process can be detected.

Garbage collection is used to reclaim names.

All processes on a given CP/AP pair share a single address space. Subscripts must be checked to

prevent inadvertent memory accesses which might corrupt run-time system structures or other

processes. The shared address space makes context switching more efficient and allows processes

to be smaller than the smallest hardware-protected memory segment (4K bytes).

Provision is made to relocate any process. There is no way to find and change all references to a

process, since no back-pointers are maintained from the process frame to process names. Instead of

immediately correcting the references, a forwarding address technique is used. To move a process, a

new name is created for the new location. The original descriptor table is modified to hold a

"forwarding address", i.e. the new process name, and the state is set to forward. Whenever a

message arrives at the old process location, the sender is informed of the address change, and the

message is forwarded. (Messages all contain the name of the sender.) The sender uses the address

change notice to update the outdated reference. Eventually, if all references to the old name are

updated, no more will exist, and the garbage collector will recover the old process descriptor table

entry for reuse. The current implementation has all the necessary data structures, but does not

actually move processes.

The process descriptor table is very useful for debugging and garbage collection, since it provides

a fixed location in which all names are defined.
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5.4 Implementation of send statements

A number of steps are performed to implement send statements. Execution begins when an AP

reaches code for a send in a process. Execution of the send involves the use of several Medusa

messages and several processors. At the completion of the send, the AMPL message must reside in

the message queue of the destination port, and the AP resumes execution of the next A.APL

statement.

The AP which initiates'the send constructs a Medusa message in a send buffer allocated by the

compiler. The Medusa message contains the following:

1. A function code (SEND).

2. The destination port name.

3. The name of the sender.

4. The actual AMPL message.

All Medusa messages sent by the AMPL run-time system have, as the first word, a function code

which identifies the type of the message. These function codes will be written in SMALL CAPITALS. A

Medusa message with the function code (for example) SENO will also be referred to as a SEND

message or simply as a SEND.

The AP directly sends this message to the CP indicated by the destination port name. At this point,

the AP suspends the current process. The next process on the ready-to-run queue is executed while

the message is delivered. The time to perform this context switch is much less than the time required

to deliver the message.

When the CP receives a message, it first reads the function code and then calls a handler to

perform the requested function. Figure 9 outlines the structure or the CP program. In this case, a

receive !.jndfer is called. The receive handler reads the process index from the destination port

name and locates the process frame. Each process frame contains storage for me:;sage queues. The

frame also contains the address of a module template which is a sto- age map used to locate message

queues and variables in the process frame (see Figure 7). Once the CP finds its way to the

appropriate queue, three cases arise:

.~v~jm=
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initialize data structures
loop

if message in high-priority pipe then
receive message
case message function code of

SEND: call receive handler
REPLY: call reply handler
CREATE: call create handler

end case
elif message in low-priority pipe then

receive message
case message function code of

GCMARK: call gcmark handler
GCSCAN: call gcscan handler

end case
end if

end loop

Figure 9: The structure of the CP program.

1. The queue is empty. The message is copied into the queue. If the receiving process is
suspended, it is moved to the ready-to-run queue, because the process may be waiting
for the message.

2. The queue is neither empty nor full. The message is copied into the queue and no
rescheduling is attempted.

3. The queue is full. The name of the sender is placed on a special waiting list associated

with the buffer, and the message is discarded.

In the first two cases, the message is delivered, so the sender must be rescheduled. The receive

handler sends a Medusa message with the function code REPLY to the CP associated with the sender.

(See Figure 10.) This completes the processing at the receiver's end. When the sender's CP receives

the REPLY message, a reply handler is called. This routine simply reschedules the sending process by

placing it on the AP's ready-to-run queue. Finally, the AP removes the process from the queue and

resumes execution.

In the third case (the message queue is full), no REPLY message is returned, and the sending

process remains suspended. (See Figure 11.) The name of the suspended process is saved on a

waiting list. Whenever an AMPL message is removed from a queue. the waiting list is checked to see
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1. SEND

CP #2 recivr

1. AP # 1 sends send message to CP # 2
2. AP # 1 suspends sender
3. CP # 2 copies message into receiver's message queue
4. CP # 2 sends reply to CP # 1
5. CP # 1 reschedules sender
6. AP # 1 resumes execution of sender

Figure 10: Sending a message to a non-full port.

if any senders are suspended because of a previous attempt to send an AMPL message. If the waiting

list is not empty, a REQUEST message is sent to the CP associated with the name at the head of the

waiting list. When the CP receives the REQUEST, it finds the suspended process and locates its send

buffer, which still contains a copy of the original SEND message. The function code is changed to

REQUEST-REPLY and the (Medusa) message is again sent to the destination CP. This time, it is known

that there is room in the destination port, so the suspended process is rescheduled without waiting for

a reply. When the destination CP receives the REQUEST-REPLY message, the correct message queue

is again located and the mezsage is placed in the queue. As before, if the queue changes from empty

to non-empty and the process is suspended, it is rescheduled.



36

cP#1 sede

3. OP 2 puts sendereireevnpotswtnglt

i ! 1. SEND

5.REQUEST

6. REQUEST-REPLY Cp /

receiver

1. AP # 1 sends send message to CP # 2
2. AP # 1 suspends sender
3. CP # 2 puts sender's name in receiving port's waiting list
4. receiver accepts a message, making room for a new one
5. AP # 2 sends request to CP # 1

6. CP # 1 resends sender's original message
7. CP # 1 reschedules sender
8. CP # 2 delivers message
9. AP # 1 resumes execution of sender

Figure 1 1: Sending a message to a port which is initially full.

Messages are delivered in order, even when senders are blocked waiting for a queue to become

non.full. The actual procedure used by the receive handler is a little more complicated than

described. The waiting list is a FIFO queue of process names. A message can be placed directly into

the message queue only if the waiting list is empty. Otherwise, even if space is available for the

message, the sender's name is added to the waiting list and the message is discarded. This prevents

a message from being placed ahead of one sent previously, and preserves space for messages that

have been requested. A name is removed from the waiting list only after the RE0UEST- REPLY arrives to

fill the reserved slot in the queue.
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An optimization of this implementation is possible. A semaphore in each process frame is used to

indicate that an AMPL send or create operation is in progress from that process. The semaphore is

initialized to one. A P operation is performed on the semaphore by the process at the beginning of

each send or create statement, and a V operation is performed by the CP when the operation

completes. Also, a P and V operation surround each accept and select statement. The process is

not suspended after initiating a send or create operation. The sender can continue executing up to.

the beginning of the next message operation. The language definition says that the message must be

delivered before the sender can continue. The optimization does not obey this rule, but the language

semantics are identical. How could a programmer detect that this optimization has been made? One

way to find out if a process continues after a send is to try sending it a message or to have it send a

second message. Both of these possibilities are prevented by the semaphore. The only other way to

detect the optimization is to write a program that depends on real computation time. The language

definition makes no guarantees of relative computation speeds or scheduling policy. The process will

appear as if, after the send or create operation is complete, a number of statements are executed

instantaneously. What actually happens cannot be observed.

Another optimization could be made if AMPL were extended to support replies from messages.

Rather than sending a REPLY when a message is placed in a queue, the REPLY would be sent after the

message was received, and would contain a return value. This would require two or four Medusa

messages, depending on whether the initial sender blocks waiting for a non-full queue. The current

language and implementation requires either four or six Medusa messages to perform the equivalent

task.

5.5 Creating a process

Like sends, an AMPL create can result in a number of Medusa messages, and involve several

communication processors. The AP initiates the create operation by constructing a CREATE message

in its send buffer. The message contains the name of the module to be instantiated (the name is

represented by a module template address). The message also contains

1. the name of the current process (the sender).

2. An offset within the current process frame indicating where to return the new process
name.

3. A counter initialized to zero to be used by the communication processors.

4. Values of actual parameters specified in the create call.
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The AP selects a destination CP for the (Medusa) message, and sends it. The process suspends

while the create operation is performed.

'-" Creating 1CET

5. CREATE-REPLY

1. AP # 1 sends create message to CP # 2
2. AP # 1 suspends creating process
3. CP #2 creates and schedules new process
4. AP #2 begins executing new process
5. CP # 2 sends create-reply message to CP # 1
6. CP # 1 reschedules creating process
7. AP # 1 resumes execution of creating process

Figure 12: Creating a process where space is immediately available.

When the destination CP receives the message, it calls its create handler. Let us assume that there

is a free slot in the process descriptor table and enough free memory for the process frame. (See
Figure 12.) The CP uses its local copy of the module template to initialize a process frame, including

the stack, message queues, and variables. The actual parameters are copied from the message to

the formal parameter locations in the frame. The created process is scheduled for execution, and a

CREATE-REPLY message is returned to the CP of the process which sent the CREATE message. The

CREATE-REPLY contains the name of the new process, the offset specified in the CREATE message, and

the name of the sender of the CREATE message.

LLU
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When a CP receives a CREATE-REPLY, it locates the process which sent the CREATE message. The

CP writes the name of the created process into process frame at the specified offset and reschedules

the process. The process resumes execution at the next AMPL statement.

1.# AP1sed ret msaetc#

2.AP#1sspnd retigProc essng

1.CREATE

4 . CREATEsageTis forwadby-ea. REA TE 'R E P LY EST-REP/LYI

1 P es r ate o message nd reun to -

6. CP #2 starts garage collection and enques the

name of the creating process

7. After garbage collection, CP # 2 sends create-reqluest
to CPC#1

8. CP #1 sends create-request-reply to CP #2
9. CP # 2 creates new parocms

10. AP # 2 begins executing new processJ
11. CP #2 sends create-reply message to CP # 1

12. CP * 1 reschedules creating process

13. AP # 1 resumes execution of creating process

Figure 13: Creating a process where space is not immediately available.

If the destination CP does not have room for the process frame, or does not have room in its

descriptor table, garbage collection is started, and the OP forwards the CREATE message to another
OP. (.e Figure i3.) Process creation then proceeds as before. The CP's are ordered cyclically for

the purpose of forwarding CREATE messages, so if no CP has room for the process, the message

returns to the original destination CP. The CREATE message has a counter which is incremented each
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time the message is forwarded, so a CID can detect if the message has been forwarded by every CID.
When this happens, the name of the process which originally sent the message is placed on a waiting

list and the message is discarded. This waiting list is similar to the waiting list for saving the names of

processes blocked by full message queues (see Section 5.4).

When garbage collection completes, each CP checks its waiting list to see if any processes are

blocked waiting for a process creation. If so, a CREATE-REQUEST message is sent to request that the

original create attempt be retried. This works very much like the REQUEST message used in

implementing AMPL sends. The CP that receives the request simply locates the send buffer with the

original message, changes the function code to CREATE-REQUEST-REPLY, and resends the message. If

no CP has room to create a process on the second attempt, program execution is aborted and a

message of explanation is written on the user's terminal. Otherwise, the CREATE-REQUEST-REPLY is

treated just like a create message. A new process is created and a CREATE-REPLY is sent to the CP for

the process executing the create statement.

This strategy effectively slows down program execution, when necessary, to give more processor

time to the parallel garbage collector. As memory is exhausted on CP's, more and more processes

are suspended waiting for create operations. This self-regulation is actually observable in practice

and allows programs to run to completion, which would otherwise outrun the garbage collector and

exhaust the available memory. It is possible that a program could be terminated when, after one more

garbage collection cycles, another attempt at creation would succeed. This has not happened.

Whenever a process terminates, the AP sends the process name to its CP in an UNCREATE message.

The CP responds by marking the process descriptor as Halted, and returns the process frame to free

storage.

5.6 Garbage collection

In this section, the parallel garbage collector used in the AMPL run-time system is described. To

our knowledge, there is only one other distributed parallel garbage collector implementation in

existence [6]; it is used in the STAROS operating system [211. Other descriptions of parallel garbage

collectors exist (10, 24], but these deal with only one garbage collection process. For this reason, a
rather detailed discussion of the garbage collector is included. Significant differences between the

AMPL and STAROS garbage collectors will be presented.
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All garbage collectors are based on the following simple "mark-scan" algorithm1

1. Mark the set of objects known not to be garbage (called the root objects).

2. Mark all objects that can be reached by following pointers from the marked objects.
Repeat this step until no more unmarked objects can be found.

3. Reclaim the storage used by any object not marked; these objects are garbage because
there is no way to reach them by following pointers from the set of root objects. The
remaining non-garbage items will be referred to below as reachable objects.

The AMPL garbage collector consists of four phases, two of which run in parallel, as illustrated by

Figure 14. The algorithm still corresponds to the classic mark-scan algorithm, and the extra phases

are for synchronization only.

Start 3 Scan

Interlock

Completed

Figure 14: Garbage collection phases.

Garbage collection is performed by the communication processors. Recall the structure of the CP

(Figure 9). Each CP has two Medusa pipes; one is for high-priority messages like SEND messages, and

1Even the semi-space copying algorithm [3) fits this description. Rather than setting a "mark bit," objects are marked by
moving them to another block of memory, thus an address bit is used as the mark bit. [17)
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the other is for low-priority garbage-collection messages. The CP continually polls its two pipes for

messages. The low-priority pipe is examined only if the high-priority pipe is empty. Every message

received has a function code which is used to specify a handler for that message. Each handler

performs a small task, sometimes sending new messages. Garbage collection runs as a background

task since garbage collection messages are sent to the low-priority pipe. This organization effectively

multiplexes the CP to perform many tasks while only using one process. Since CP's interact almost

exclusively through messages, a large amount of overhead for synchronization within each message

handler is avoided. For globally synchronizing garbage collection phases, global counters and

Medusa-provided atomic increment and decrement operations are also used. These operations are

much faster than Medusa messages, but their use is purely an optimization of a message-based

implementation.

5.6.1 What to collect

The only dynamically allocated objects in AMPL are processes and messages. Messages take up

storage only until they are delivered, so garbage collection is only concerned with reclaiming process

names (descriptor table entries) and process frames. The initial (root) set of processes known not to

be garbage is composed of the following:

1. The processes being executed by AP's.

2. Processes in the ready-to-run queues.

3. Processes whose names are on the create waiting queue of some CP. (These processes
are blocked waiting to create a process.)

4. Process names in messages waiting to be delivered.

Any process reachable from this set is marked; the rest are garbage. If a name is identified as

garbage, and the name refers to a process frame, then the process frame is not only suspended, but it

can never be rescheduled (no other process can send it a message). Therefore, the frame is returned

to the free storage pool.

5.6.2 Phase 1

Any CP can start garbage collection. To do so, a memory location global to all CP's is locked with a

Medusa "test and set" operation to prevent two CP's from starting garbage collection simultaneously.

Then, GCSTART messages are sent to each CP. The CP which starts garbage collection is called the

garbage collection master.

When a CP receives a GCSTART message, it finds all the root processes, and sends GCMARK
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messages to the CP associated with each name. Many of these message will be sent from each CP

back to itself. This is a simplification which could be optimized. The function of GCMARK messages is

given below. The CP then sets a local state variable to GCstarted, and returns a GCSTARTREPLY

message to the garbage collection master, who is identified by a field in the GCSTART message.

There are some root names which cannot be accessed by any CP when garbage collection is

started. These are names which are in Medusa pipes. Consider a process suspended waiting for a

REPLY message. The reply could have the only reference to this process, so if garbage collection

completed before this message arrived, the suspended process would be erroneously collected. To

prevent this, the garbage collection master sends an INTERLOCK message to each high-priority port

after a GCSTARTREPLY message is received from each CP. Receipt of the INTERLOCK message is

described below.

5.6.3 Phase 2

The second phase is concerned mainly with receiving and handling GCMARK messages. Each

GCMARK message contains one process name. The handler for these messages starts by setting the

mark bit for that name in the process descriptor table. If the name was previously unmarked, and

there is a process frame for the name (the process has not terminated), then the frame is scanned

using the module descriptor to locate all process and port names. For each non-null name found, a

GCMARK message containing the name is sent to the CP indicated in the name. (Recall that each

name specifies a process descriptor table index and a CP/AP pair index.)

While a frame is being scanned, a lock is set on the frame to prevent the AP from copying any

process or port names. Otherwise, the garbage collector might miss a reference as it is being moved,

or it might read a name in a corrupt state, i.e. the first word of one name and the second word of

another. In STAROS, objects are not locked as they are scanned. Instead, the operating system must

be called to copy a name, and the system notifies the garbage collector. The corresponding action in

AMPL would either be to require the CP to copy references, or to have the AP inform the CP whenever

a name is copied. In the latter case, locks would still be needed to prevent the CP from reading

names in a corrupt state. The CP would release the lock between the reading of each name. The

trade-offs are summarized below. For the method implemented,

1. The CP performs only one lock operation per process scanned.

2. The AP may be blocked for the time it takes to scan the frame for names.

For the alternate scheme,

L-
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1. The CP performs one lock operation for each name scanned.

2. The AP is at most only blocked for the time it takes to read one name.

3. The AP must make a test and possibly send a message to the CP whenever a name is
moved.

While marking is taking place, processes can be sending messages and creating new processes.

The following invariant is maintained:

If a process is marked by the garbage collector, then a GCMARK message has been sent
for each name contained in that process frame.

To maintain this property, special precautions must be taken when sending messages and creating

processes. Every SEND, REQUEST-REPLY, CREATE, and CREATE-REPLY message has a tag which is used

to mark the message if the sender is marked. If a message is marked, then it is known that a GCMARK

message has been sent for each name in the message, because the names in the message are copied

from variables in a marked process frame.

When an AMPL message is delivered to a port, the tag is checked. If it is marked, then no action is

taken. If the message is unmarked, and the receiving process is marked, then a GCMARK message is

sent for every name in the message before the message is placed in the receiver's message queue.

This must be done to maintain the invariant without unmarking process frames.

In the case of create messages, the created process is marked to prevent its garbage collection. If

the create message tag is unmarked, then a GCMARK message is sent for each name supplied in the

actual parameter list.

Phase 2 completes when there are no more GCMARK messages, and all reachable processes.have

been marked. Determining when this condition is reached is not simple because messages are sent

and received asynchronously by all CP's. Even if all pipes are empty, there could be a message in

transit. Completion is detected by maintaining a global counter which is incremented before each

GCMARK message is sent. After a GCMARK message is received and the process frame is scanned, the

global counter is decremented. The counter (initially zero) returns to zero when all GCMARK

messages have been processed.

In STAROS, garbage collectors rely on real-time constraints to determine when the mark phase is

complete. When it appears that marking is done, the garbage collectors wait for a predetermined time

to make sure no new names are discovered. Since marking is assisted by Kmaps, processing is fast,

and the time delay is short. A third method could be based on sending replies to each GCMARK

message. A fourth approach is discussed in Appendix I.
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The mark phase is guaranteed to terminate in the following sense. Assume that unlimited memory

and name space are available, so that processing is never held up because space is unavailable.

Garbage collection messages are handled at a finite rate in each CP, but the high-priority messages,

i.e. non-garbage collection messages which may contain names, can be handled at an arbitrarily fast,

but finite rate. The mark phase will terminate in a finite time. The proof is based on the invariant

stated on page 44, the fact that created processes are marked, and the fact that processes are never

unmarked during the mark phase. From these three facts, we can deduce the following:

1. The number of unmarked, but reachable processes is finite. We assume there are a finite
number of processes to begin with. Since all created processes are marked, and no
processes change from the marked to the unmarked state, the number of unmarked
processes does not grow during the mark phase.

2. The number of unmarked but reachable processes is non-negative. This is obvious.

3. The number of unmarked reachable processes is monotonically decreasing. The number
can never increase because no processes are unmarked during the mark phase. To see
that the number will decrease, consider the set of reachable unmarked processes. There
must be at least one reference from a marked process to one of these unmarked
processes. By the invariant, a GCMARK message has been sent with that reference. The
queues of GCMARK messages can get arbitrarily large, depending on the relative amount
of processing time devoted to garbage collection, but the queues are always finite. Since
garbage collection messages are handled at a finite rate, this message will eventually be
received, the process will be marked, and the number of unmarked processes will
decrease.

Using the above three observations, we see that the number of unmarked, but reachable processes

must go to zero. Eventually, all reachable process frames become marked and no more GCMARK

messages are sent, so the queues become empty. At this point the mark phase terminates.

In STAROS, a different technique is used to prevent the garbage collector from missing a reference

to a reachable object. Whenever a new reference is made, the reference is sent to the garbage

collector so that the referenced object will be marked. If assignment of references occurs arbitrarily

more frequently than garbage collection operations, then the marking phase will not terminate. (This

can occur even when the total number of names and objects is constant.) This property is not a

problem in practice for STAROS.

5.6.4 Phase 3

Recall that in phase 1, an interlock message was sent to the high priority pipe of each CP. Phase 3

is the period between the end of Phase 1 and the time the interlock messages are all received. Phase

3 overlaps Phase 2, as indicated in Figure 14.
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Some rather intricate synchronization involving another global counter is used to detect when both

phases 2 and 3 have completed in all CP's. The STAROS analogue of phase 3 is the time delay used

to check that all marking is complete. In STAROS, the time during which a name can be hidden (in

Kmap registers) is bounded by a short interval, so simply waiting is preferable to the use of interlock

messages.

5.6.5 Phase 4

The CP detecting the tnd of Phases 2 and 3 in all CP's sends a GCSCAN message to each CP.

When this message is received, the process descriptor table is scanned by each CP and unmarked

processes are collected. This is currently all performed in one continuous operation, but the CP

could easily alternate between checking the high-priority queue and scanning a few more table

entries. As each CP completes its scan, it increments yet another global counter. When this counter

reaches the number of CP's, the "garbage collection in progress" lock is reset to allow another

garbage collection to be started. The period between garbage collections is referred to as phase 0.

5.6.6 An optimization

An extra status bit is used in the process descriptor table entry for each process to indicate when a

GCMARK message for that process has been sent. The bit can only be set when a GCMARK message is

sent from a CP to itself because, otherwise, a CP would have to access the process descriptor table of

some other CP. Before a GCMARK message is sent from a CP to itself, this status bit and the mark bit

are examined. If either is set, the message is redundant, so it is not sent.

In STAROS, a special mark is used to indicate that an object has no references outside the cluster.

For global garbage collections, there must be at least one garbage collector per cluster. These

objects can be collected without synchronizing with other garbage collection processes, since if no

local references are found, the object is known to be garbage. This optimization has not been

included in the AMPL garbage collector since processes are created on remote CP/AP pairs to

achieve more parallelism, resulting in many references between pairs.

5.7 The Compiler

The AMPL parser was implemented by an automatic parser-generator called FEG [13]. The code

generator is written in Bliss-36 using support tools that interface cleanly with the FEG-produced

parser and allow the parse-tree to be conveniently accessed.

The code-generator outputs Bliss-11 code. There are several advantages to this approach.
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Bliss-11 code is easier to read than assembly or machine code. In fact, much of the compiler was

debugged by reading the output. A second advantage is that Bliss-11 is easier to generate than

assembly code. In particular, the Bliss-11 compiler takes care of register allocation and control

structures. The Bliss-11 macro facility is used not only to make code more readable, but also to act as

a post-processor for the AMPL compiler. Finally, the Bliss-11 compiler is an excellent optimizer. It

probably results in better code than a simple assembly-code generator would produce. The fact that.

Bliss-11 is a rather low-level language is an advantage here, since there are few assumptions in

Bliss-11 which interfere with the efficient translation of AMPL programs.

5.7.1 Storage allocation

All storage within process frames is statically allocated by the compiler. Process frames consist of

several sections. A system-information section provides the process name, a pointer to its module

descriptor, the frame size, etc. The message queue section contains storage for each message

queue. Queues are fixed-sized linear lists. For queues which are shared by several ports (see

Section 3.1) the queue-element size is as big as the largest message. A variable section contains

storage for the formal parameters and variables. A send buffer is allocated which is large enough for

any message sent by the module. Finally, there is a fixed-sized stack. Because of restrictions

imposed by Medusa, the stack and send buffer cannot cross a 4096-byte page boundary. The

compiler allocates storage to meet this constraint. Knuth's buddy algorithm [23] is used by the

memory manager so that process frames are alligned on the proper boundaries. The storage layout is

completely defined by the compiler and encoded into a module template which is used by the CP to

find message queues and to locate names during garbage collection. The template also points to the

code for the module as illustrated in Figure 7.

Because local accesses are much faster than nonlocal accesses, code is always kept local to the

processor which executes it. Each AP is provided with a copy of its portion of the run-time system,

the. compiled AMPL code, and the module templates. Since code is available at each AP, AMPL

processes run with equal efficiency on any AP. Code and templates are shared when several

instantiations of a module exist at a single CP/AP pair.

A standard part of the run-time system is a program which will describe an AMPL process, showing

its name, frame address, buffer locations and contents, etc. This program can be invoked from the

Medusa debugger. Enough information is present so that a complete symbolic debugger could be

added to the AMPL system if desired.
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6 Performance measurements

A number of small programs have been coded in AMPL and executed on Cm° , with the goal of

learning how the language influences algorithm design and affects performance. The measurements

reveal run-time characteristics of AMPL programs. In some cases, the data suggests optimizations of

the implementation, and extensions or modifications to the language.

Comparing the performance of AMPL programs to other programs implemented on Cm* is difficult.

We would like to know what are the consequences of design decisions in AMPL, whereas what we

measure is often strongly influenced by one particular implementation. For example, in [22], two

versions of the program PDE are compared. One version executed the problem in 7 seconds using 38

processors. Another "improved and optimized" version accomplished the same task in 7 seconds

using only 7 processors. Both of these programs were written in Bliss-11 for Cm*. Programs written

in different languages should demonstrate even wider variations in performance.

In the case of the PDE program, the faster version demonstrated relatively less speedup as a

function of the number of processors. In fact, the real execution time began to increase when more

than 22 processors were used. The slower program continued to run faster as more processors were

added. This paradox is resolved by the consideration of contention. When many processes share

data, the time devoted to synchronization increases with the number of processors. If

synchronization and communication costs dominate the total cost of computation, then speedup due

to parallelism will be slight or even negative.

Some of the AMPL programs to be described exhibit a negligible communication cost, and the to.al

execution time is determined almost entirely by the AP processing time. Other programsa are

dominated by the communication cost, and AP's are idle much of the time. Changing the relative

execution speeds of the AP and CP by optimizing the run-time system or increasing the quality of the

code generator could radically change some of our results. For this reason, measures of program

performance are sought which are independent of relative execution speed One such measure is the

ratio of information passed in messages to the information stored in or fetched from local variables. A

low ratio indicates that most of the execution time is spent accessing local memory and performing

local computation. A high ratio indicates that most of the execution time is spent communicating with

other processes, and little local computation is performed.
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6.1 Instrumentation

A flexible system for monitoring execution has been implemented. The code for the run-time

system contains macro calls for every important event. For example, the routine which performs an

AMPL send statement includes the following macro call:

AMPLsend(.len, .buff);

where ".len" is the length of the message and ".buff" is the send-buffer address. The compiler also

generates a few macro calls for instrumentation.

Instrumentation macros are defined in an include file which can be altered according to what

measurements are desired. For example, the above call to AMPLsend is normally defined to generate

the following code:

(InSndPB[O] - (.ien);
SKAdd(InSndPB);
$KlncWord(AMPLsendNum));

The first two lines add the message length to a sum, using an indivisible addition operation provided

by Medusa microcode. The third line indivisibly increments a counter. The whole operation executes

in about lOus, equivaleit to about 13 LSI-1 1 instruction times.

The use of macro calls simplifies modifications to the instrumentation. For example, if we were

interested in the sources or destinations of messages, the AMPLsend macro could be rewritten to

collect the extra information. Instrumentation overhead can be eliminated by redefining all

instrumentation macros to the empty string.

A dedicated processor is used to gather this data at run-time, so as to provide minimal interference

with the run-time system. One advantage of this approach is that values like the number of bytes sent

in messages can be accumulated using single-precision arithmetic without danger of overflow. The

instrumentation process periodically clears these accumulators and transfers their contents to a

central, extended-precision accumulator. (The fact that instrumentation variables are shared by

several processes explains why indivisible operations are used in the above example.) Figure

15 illustrates the instrumentation organization. Another use of the instrumentation process is to take

samples of the state of the run-time system. AP and CP utilization are computed by sampling flags

which tell when the AP and CP are idle. Using a separate process to collect data also allows each AP

and CP to avoid time-consuming inter-cluster memory updates and reduces the code required for the

AP and CP processors.

A few general comments about our measurements must be made. First, execution times of AMPL
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Figure 15: Instrumentation of the AMPL run-time system.

programs vary slightly from one run to the next. The execution speeds of the computer modules on

Cm" vary. Many objects, including Medusa pipes and some memory pages are dynamically allocated.

The choice of object locations can also affect timings. Special efforts have been made to specify
locations where placement is critical, but all measurements given in the following sections should

only be considered accurate to within 5 percent. Consequently, most of the measurements are
rounded to two decimal places in this report. Secondly, the run-time system was modified so that the

user is optionally queried whenever a process location is chosen. In this way, the user can override
the default locations chosen by the run-time system. This facility was used in a few of the tests to

achieve the desired configuration. The location query can be enabled or disabled by using the linker

to set a flag. Unless otherwise indicated, all measurements are made with all bounds checking and

debugging facilities enabled. The debugging facilities slow the run-time system by approximately 10

percent.
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6.2 Static measurements

The run-time system has a total of 3424 lines of code of which 28% are comments. This does not

include any of the Medusa operating system, or the rather large file that contains macros and

definitions used to interface Bliss-11 programs to Medusa. The compiler has 3364 lines of code. Of

this, 3058 lines are in the code generator (15% are comments), and 306 lines define the syntax for the

parser generator.

The code sizes for the run-time system are listed in Table 1. Typically, 16K bytes are allocated by

each AP for the process frame heap. About 15K bytes are available for compiled AMPL programs,

limiting program size to about 350 lines of code. Since little attention was paid to conserving memory,

there is considerable room for improvement in this area. Given the small address space of Cm*

processors, a method of distributing code as well as processes would be necessary to run large

programs.

Description of Code Size (bytes)

memory manager 792
garbage collector 2646
debugging and display routines 2638
input/output routines 1408
Bliss-11 run-time routines 240
other AP routines and initialization 2830
other CP routines and initialization 5336
AMPL input/output modules 4334

Total 20224

Table 1: Run-time system code size.

6.3 Send operations

The program SNDS is used to measure the time to send and accept a minimum length AMPL

message. The program was run on a single CP/AP pair. (The same code is executed regardless of

the destination of a message.) The program is written so that all sends are to an empty port and all

accepts are from a full port, so this represents the fastest time to deliver a message. Section 1I1.1 has

a listing of SNDS. The time to send 10000 messages is 96 seconds, so each message takes 9.6 ms, or

about 1200 LSI- 11 instruction times.

Some simple analysis was performed to see where the time is spent. Table 2 provides a breakdown

of the total time in terms of instruction counts. Instruction counts are used rather than instruction
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times to simplify the analysis. An average instruction time of 8 microseconds is assumed. Actual

instruction times are a function of the type of instruction, the source addressing mode, the destination

addressing mode, and the location of all memory references (local, intra-cluster, or inter-cluster).

Where Medusa operations are invoked, the equivalent number of LSI- 11 instructions is taken from

[22] or [28]. The instruction counts indicate that the computation time is spread fairly uniformly

among the logical subtasks required to send a message. There is little overlap between the CP and

AP in this program. The measured time is therefore somewhat misleading, since if two processes

each sent a message, the CP and AP execution would overlap. Although the time to deliver a

message would increase, the measured throughput would be significantly greater. Furthermore, if

multiple CP/AP pairs are used, even more parallelism is obtained.

Instructions Percent
of Total

AP instructions for send statement:
evaluate arguments and call send routine 8 1%
build sE. O message 108 11
send Medusa message 62 6
context swap 68 7

subtotal 246 25

CP instructions to handle SEND message:
poll pipes for SEND message 119 12
SEND handler 180 18
send REPLY message 84 9
reschedule receiver 40 4

subtotal 423 43

AP instructions for accept statement: subtotal 123 12

CP instructions to handle REPLY message:
poll pipes for REPLY message 119 12
REPLY handler 36 4
reschedule sending process 40 4

subtotal 195 20

total 987 100%

total estimated time 7.9 me

Table 2: Time to send and accept a message.

The total estimated execution time is faster than the measured time. Several factors have not been

included in the estimate. First, non-local memory references have not been considered. The AMPL

process frame is local to the AP. All references from the CP to the process frame take about 10us, so

uiLA _ _n ll . . . . . . . . .- . .. .. . ... . . . . . ,, . . . .
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each reference costs approximately one extra instruction time. Second, our estimate of 8us per

instruction may be incorrect, particularly since our implementation uses a large amount of indirect

addressing to locate variables and port structures in the process frame. Third, estimates are based

on inspection of the code, not on instruction traces. In particular, it is assumed that when a message

arrives at the CP, the CP is at a random point in its cycle of polling the high. and low-priority pipes. A
complete cycle (two conditional receives) takes just over 1 ms.

Table 3 contains an alternate breakdown to the total execution time. As indicated, Kmap

(microcode) operations take a significant amount of the total execution time. Besides using Medusa

message operations, the Kmap operations include microcoded block-move operations to build the

SEND message, to copy the AMPL message value into the destination message queue, and to copy

from the queue into the variable specified by the accept statement.

Instructions Percent
of Total

save registers and coroutine call 84 9%
debugging 90 9
Kmap operations 366 37
other 447 45

total 987 100%
total estimated time 6.9 ms

Table 3: Alternate analysis of the execution of a send statement.

6.4 Create operations

The program CREA can be used to create an arbitrary number of "empty" processes which contain

no parameters, variables, ports, or statements. This program was run on a single CP/AP pair, it

creates and destroys 400 processes in 8 seconds, or one process in about 20 ms. The process

descriptor table is large enough that no garbage collection is invoked during these create operations.

In this time the AP is idle 87% of the time. The CP is never idle.

Tables 4 and 5 provide an analysis of timings analogous to those given for send statements.

Most of the time (58%) is taken by the CP to allocate, initialize, and schedule the new process

frame. The CP executes 420 instructions2 to, fill the frame's stack area with zeroes, which takes 18%

2 Since the time taken by the inner loop w,,:-h fills .'.roes a critical. instructiom timings from 191 were used rather than
instruction counts. The equivalent count of 420 is Otaril by dividing the total time by 8us. This is the same formula used to
derive equivalent instruction counts for microcoded operations,
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AP instructions for create: Instructions Percent of
Total

evaluate arguments and call create routine 8 0.3%
build CREATE message 67 2.9
send Medusa message 62 2.7
context swap 68 2.9

subtotal 205 8.9

CP instructions to handle CREATE message:
poll pipes for CREATE message 119 5.2
allocate process frame and table entry 317 13.7
initialize process frame 802 34.7
schedule new process 40 1.7
send CREATE-REPLY message 62 2.7

subtotal 1340 58.0

CP instructions to handle CREATE.REPLY message:
poll pipes for CREATE.REPLY message 119 5.2
CREATE-REPLY handler 31 1.3
reschedule creating process 40 1.7

subtotal 190 8.

AP instructions to run created process:
build UNCREATE message and context swap 117 5.1
send UNCREATE message 62 2.7

subtotal 179 7.7

CP instructions to handle UNCREATE message:
poll pipes for UNCREATE message 119 5.2
UNCREATE handler 22 1.0
deallocate process frame 255 11.0

subtotal 396 7.1

total 2310 100%

total estimated time 18 ms

Table 4: Analysis of process creation and termination.

Instructions Percent of
Total

save registers and coroutine calls 185 8%
debugging 104 5
Kmap operations 510 22
other 1511 65

total 2310 100%

total estimated time 18 ms

Table 5: Alternate analysis of process creation and termination.

of the total time listed in the tables. This initialization is performed only to facilitate debugging and
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could be eliminated. A significant amount of time (24%) is spent allocating and deallocating process

frames. This is an estimate based on the assumption that a memory block is split in two one time for

each allocation, and two blocks are reunited one time for each deallocation. The memory manager

execution time could probably be cut in half without much effort by writing more efficient memory

management code.

Obtaining further improvements in the run-time system wouid be more difficult. The measured time

for creation and termination of a process (20ms) is somewhat longer than the estimated time (18ms).

The factors mentioned in Section 6.3 are applicable here. The process creation and termination time

compares favorably with the message send and accept time. Note that we have included time to

terminate a process and reclaim the process frame in the preceding measurements. The estimated

time just to create a process is about 14ms.

6.5 Garbage collection

The program GC creates an arbitrary number of processes. This program is identical to CREA

except the created processes each declare a port and a variable and attempt to execute an accept

statement. No message is ever sent to the created processes, so all of them remain suspended. GC

is listed in Section 111.2. The process-frames fill the available memory causing the garbage collector to

be invoked. On a single CP/AP pair, the execution time for 2000 create operations is 53 seconds, or

about 27 ms per create. This includes time for garbage collection, which is in progress 61 percent of

the time. A total of 1138 GCMARK messages are sent to accomplish 95 garbage collection cycles. The

AP is idle 84% of the time, and the CP is idle 8% of the time.

6.6 PDES

The PDES program uses the finite difference method to solve Laplace's partial differential equation

with specified boundary conditions (Dirichlet's problem) [22].

Two versions of this algorithm were implemented. The first is PDES, which uses synchronous

communication. (See Figure 16.) The grid is divided into slices, and a slave process is created to

compute each slice. The slave processes exchange edges after each iteration of the relaxation

algorithm. Synchronization is maintained only by waiting on edges, so neighboring slaves are only

synchronized to within one iteration. In a program with N slaves, if the first slave is computing

iteration I, then the last slave could be computing any iteration from I - (N. 1) to I + (N - 1). To detect

convergence, each slave sends a status message to a master process after each iteration.
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Figure 16: Structure of the PDES program.

The program parameters were varied in two ways. First, the program was executed with varying

numbers of slaves on a single CPiAP pair. This allows us to measure the overhead incurred by

dividing the grid across communicating processes. Secondly, the program was executed with slaves

on one, two, and four CP/AP pairs to measure the relative speedup obtainable by using more

processors. Figure 17 (unshaded bars) shows the real execution times and total CPU times for

various parameterizations of th(. PDES program. All tests used a grid size of 34 by 34. The

measurements do not include process creation and data initialization times. The overhead added by

increasing the number of slaves is slight, so increasing the number of processors provides almost

linear speedup.

An extra CP/AP pair was used for the master process, which creates the slaves and detects when

the grid has converged. Keeping the master in a separate processor pair allowed us to easily

measure the processing time taken by the master. In the worst case (with four slaves) the master u

only 3 percent of the total CPU time.

The number of iterations required to reach convergence increases as the number of slaves

increases, because the rate of convergence depends on the order in which values of the grid are
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Figure 17: Measurements of the POES and PDEA programs.

updated. The number of iterations required as a function of the number of slaves is illustrated in

Figure 18.

The number of bytes accessed within each slave can be compared to the number of bytes

transferred in messages. If we count only accesses to the grid data, each iteration reads five two-byte

values3 and writes one for each interior grid point, for a total of

3 Four neighbors are averaged to compute the next value of each pcnt. The current grid point data is read to test for
convergence.
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Flgu re 18: Number of iterations taken by the PDES program.

2 x (6 + 1) x 32 x 32 - 12288 bytes

per iteration. The total number of message bytes is summarized in Table 6 as a percentage of these

local accesses. The overhead decreases as a function of the grid size.

number of slaves message overhead
2 1.2%
4 3.4
8 8.0

Table 6: Relative overhead for messages in PDES.

To measure the effect of code quality on our results, the inner loop of the slave program was

manually optimized by modifying the Bliss-11 code produced by the AMPL compiler. Subscript range

checking was removed, and strength reduction was performed to eliminate multiplications in array

accesses. Both of these optimizations could be performed by a modem optimizing compiler. The

modified program was the version with two slaves and a single CP/AP pair. The execution time

dropped from 531 to 75 seconds, a factor of 7 speed improvement. A small amount of time could also

be saved by eliminating debugging statements, error detection code, and instrumentation, all of

which are outside the inner loop for this particular program.

Other POE programs have been implemented on CmI using shared memory rather than messages

to communicate between slave processes. A version which runs on Medusa takes 134 seconds to

solve the problem for a 34 by 34 grid size using 1 slave and 89 seconds using 2 slaves. These figures

indicate that shared memory does not provide a tremendous advantage over the message-based

I
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AMPL programs for the PDE problem. It is difficult to make a more definitive statement since

execution speed depends so strongly on code quality.

The Medusa version of the PDE program is asynchronous. It uses a separate processor for each

slice, and there is no synchronization between processors. The grid memory is shared, so when a

processor writes a new edge value, the value is immediately available to the processor's neighbor. In

[22] it is shown how asynchronous PDE programs execute faster than unsynchronized ones. It is

interesting to note that even the "asynchronous" algorithms rely on synchronization at the hardware

level to prevent simultaneous reads and writes to memory words. If values were larger than the

memory word size, say two-word floating-point numbers, the asynchronous algorithms would risk the

possibility of reading corrupt data due to interleaved reads and writes of multiple-word values. On the

other hand, synchronous algorithms and algorithms which do not used shared memory do not

depend directly upon hardware-provided synchronization.

6.7 PDEA

The PDEA program solves the same problem as the PDES program, but in this version, the slaves

run asynchronously. Each slave checks its ports for new edge values before each iteration. If an

edge is present, the slave updates -its grid. If no new edges are present, the slave performs -an

iteration using old values rather than waiting. Determining when the entire grid has converged is

more difficult in the asynchronous version. The method used to determine convergence is discussed

in in Appendix I.

6.7.1 Discussion

As shown in Figure 17 (shaded bars), the behavior of the PDEA program is more erratic than that of

PDES. The rate of convergence seems particularly sensitive to variations in the process

configuration. When the four-slave version is run on a single processor, an average of 522 iterations

are required. When run on separate processors, the average number of iterations drops to 440. The

explanation for this behavior is simple. A FIFO ready-to-run queue is used to schedule processes. A

process is selected from the queue only when the current process suspends after sending a message,

initiating a create operation, or attempting to accept a message from an empty buffer. In the PDEA

program, the slaves on either edge of the grid have only one neighbor, and send only one message

after each iteration. The slaves in the interior of the grid each have two neighbors and send two

messages after each iteration. The interior slaves are therefore suspended twice as often as the two

edge slaves and execute about half as many iterations if all process reside on a single CP/AP pair.

The effect is maximal with four slaves, since half are edge and half are interior slaves. The maximum

and minimum average number of iterations for differing numbers of slaves are shown in Figure 19.
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Figure 19: Number of iterations taken by the PDEA program.

In comparison with the PDES algorithm, the PDEA algorithm is slower. Apparently, the extra

synchronization required by the PDES algorithm pays off by reducing the number of iterations

required to achieve convergence.

6.8 Matrix multiplication

A parallel matrix multiplication algorithm was implemented in AMPL. (See Figure 20.) Two

processes initially contain the two matrices to be multiplied. These matrices are divided into

submatrices. On command from a master process, two submatrices are sent to a slave process which

multiplies them and sends the product to a result process. Here, the submatrix products are summed

to form the complete product matrix. When a slave is ready to perform a multiplication, it sends its

name to the master. The port for these names is shown explicitly in the figure. The master uses these

names to assign work to slaves, thus work assignments are nondeterministic and depend upon the

relative execution speeds of the slave processes. The number of slaves can be altered by changing a

constant and recompiling.

As with the PDE programs, several versions of the matrix multiply program were measured. In one

set of tests, the number of slaves was varied while using a single CP/AP pair. In a second set of tests,

the number of CP/AP pairs was chosen so that each slave ran on a separate processor.
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Figure 20: Structure of the MATR matrix multiplication program.

Measurements were started after all processes were created, and measurements ended after the

product process produced a complete product.

Figure 21 shows real execution time and CPU time for varying numbers of slaves and processor

pairs. Each test multiplied two 40 by 40 element integer matrices. The matrices were divided into 16

submatrices to be multiplied by the slaves. In tests with multiple CP/AP pairs, additional processors

were used for the other processes, including the master process (scheduler), and result process

(submatrix adder). The master and result processes take about 1 Os of AP and CP processor time. An

additional 2.3s is taken by the two processes which supply the data to be multiplied. The result
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Figure 21: Measurements of the MATR matrix multiply program.

process execution time would determine the total execution time if more slave processes were added;

however, the sums performed by the result process could be performed in parallel using a

modification of our algorithm. Buffering in the result process allows the slaves to run without

blocking, even with high utilization of the CP/AP pair executing the result process.

The message overhead for the matrix multiply algorithm can be computed easily. Each element in

the product matrix is the product of two vectors of length 40. Each vector element is a two-byte

integer, so 160 bytes are fetched and 2 are stored for each product matrix element. rhe total number

of accesses is thus

I
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162 x 40 x 40 2 69200 bytes.

The total number of message bytes is 39955, independent of the number of slaves. Data sent in

messages is 15% of the theoretical minimum number of memory accesses. This number is a function

of the matrix size and the number of submatrices. In our implementation of the matrix multiplication,

slightly more local accesses are performed because vectors are not multiplied all at once, and many

more accesses are made for array indexes. A more thorough analysis is presented in Appendix If.

6.9 Telegraph problem

This problem is taken from [27]. Telegrams are represented as words of text separated by blanks

and terminated by the word "ZZZZ". The problem is to format telegrams for output by removing extra
blanks and justifying the text. Details can be found in [27].

input distribute *assemble output

Figure 22: Structure of the TELE program.

A "pipeline" approach was used to solve the problem. (See Figure 22). Each line of input is sent to

a scanner process which separates the text into words. Any number of scanners may be used.

Scanners send the words and character counts on demand to an assembler process which fills

output lines and sends them to an output process. In order to avoid interaction with physical I/O

devices, an input process serves as a source of input text, and an output process serves as a "sink"

for output text. As with other programs, measurements were begun after processes were created.

We expected the addition of scanner processes to impose no noticeable increase in execution time

on a single CP/AP pair. Figure 23 indicates that execution time increases slightly as more scanners

are used.
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Figure 23: Execution times for the TELE program, using one CP/AP pair.

An initial set of experiments using separate CP/AP pairs for each process showed only a 19

percent speedup. It was found that the scanner was not scanning while the assembler formatted

output because of inadequate buffering between the two processes. The number of messages

buffered by the assembler process was increased so that the scanner could begin scanning the next

line while the assembler formatted words of the current input line. This led to a speedup of 54 percent

over the single CP/AP pair version.

We hoped to get speedup by using multiple scanners, since scanners do more work than other

processes. Actual measurements show that this speedup is not realized. This leads to the hypothesis

that the assembler process is a bottleneck. Measurements show that the utilizations of the CP and AP

which serve the assembler process are not nearly one, although it could be that the CP and AP do not

overlap their computations. If this were the case, the utilization of the AP could be low because it

spends a significant amount of time waiting on the CP and vice versa.

6.10 Polynomial multiplication

A polynomial multiplication algorithm was adapted from an Algol 68 program [16]. Polynomials are

represented as trees of processes. A pointer to a tree node is just a module name. The program

creates and destroys many processes, and most of the computation time is spent by the CP's. The

program is large and inelegant compared to the Algol 68 version. AMPL does not lend itself well to

the functional style of programming required for this algorithm. The inclusion of procedures and a

better syntax for invoking result-returning operations would greatly simplify the task of writing

A.i _ _ __.. .. . .. .. .. . . .
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programs of this type. As an illustration, Figure 24 contains a fragment of the AMPL program. The

module in the figure, "add", is used to add two polynomials. An "add" module is created for each

addition. The addition algorithm is recursive, so the module creates new "add" modules if necessary.

The equivalent procedure in Algol 68 is illustrated in Figure 25. An extension to Algol 68 allows this

procedure to execute with essentially the same degree of parallelism (see [16] for details). Many

aspects of Algol 68 combine to account for the conciseness of this procedure:

1. The ability to define functions, e.g. the function "atoms".

2. User-defined infix and prefix operators, e.g. "+" and "even".

3. Expressions for structured values, used here to construct a value of type "poly".

4. The extension to provide parallelism, which is well-suited to this applicative program.

The first three factors could also be incorporated into an extended AMPL.

The AMPL polynomial arithmetic program creates 1340 processes and sends 2800 messages.

When executed on a single CP/AP pair, the AP is idle 63 percent of the time and the CP is essentially

never idle. Garbage collection is in progress 87 percent of the time. Versions of POLY for multiple

CP/AP pairs cannot be run at the time of this writing due to a combination of hardware and software

problems. Figure 26 summarizes the measurements obtained for the single CP/AP pair version.

7 Conclusions

AMPL demonstrates how message passing can be used to express interprocess synchronization

and communication in a high-level language. The expressive power of the primitives in AMPL allowed

us to develop programs with more complex control structures than previous Cm* application

programs. While many synchronization errors were found in the run-time system as it was tested, the

synchronization in all of the AMPL programs was correct from the start (which is not to say there were
no other bugsl) We attribute the high level of correctness to several factors. First, the absence of

shared memory forces the programmer to consider synchronization whenever processes interact.

Second, type checking helps insure that data is interpreted correctly and that interfaces between

processes are correctly implemented. Finally, since AMPL has built-in mechanisms for process

creation and message passing, the programmer can avoid the implementation of tedious operating-

system interfaces and concentrate on the problem at hand. In addition, the compiler can apply some

checking to these operations.
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module add(x,y: Poly Type; sum: RelPolyType);
po rt

OddPort: PolyType(2);
EvenPort: PolyType (2);

var
poly 1, poly2, new, zero: Poly Type;

begin
zero. atom: = 0;
if x.atom = 0 then send y to sum
else if y.atom = 0 then send x to sum
else if x.atorn 0 NotAtom and y.atom 0) NotAtomn then

new.atom: = x.atom + y.atom;
send new to sum

else
if x.atom = NotAtom then

send Self. EvenPodt to x. ref. even;
send Self. OddPort to x. ref. odd,

else
send x to Self.EvenPort,
send zero to Self. OddPort; end;

if y.atom =NotAtomn then
send Self.EvenPort to y.ref.even;
send Self.OddPort to y.ref.odd;

else
send y to Self. EvenPort,
send zero to Self. OddPort; end;

accept OddPort(poly 1): accept OddPort(poly2);
creale(add. polyl, poly2, Self.OddPort);

accept EvenPort (poly 1); accept EvenPort (poly2);
create(add, polyl, poly2, Self.EvenPort);

accept OddPort(poly 1); accept EvenPort (po/y2);
if polyl.atom = 0 and poly2.atom 0) NotA torn then

send poly2 to sum
else

new.atom: = NotAtom;
new.ref : = create(PolyMod. polyl, poly2);
send new to sum
end

end
end

end;en

Figure 24: A fragment of the AMPL polynomial arithmetic program.j

Building AMPL on an existing operating system gave us some insight into what features an
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op + (poly x, y) sexp:
if zerop x then y
elif zeropy then x
elif atoms (x. y) then new const (atom of x + atom of y)
else new poly (odd x + odd y, even x + even y)
fil;

Figure 25: Equivalent fragment of extended Algol 68 program.

Number of send statements executed 2800
Total bytes in SEND messages 15168
Number of CREATE statements executed 1340
Total bytes in create messages 25600
AP processor utilization 37%
CP processor utilization 99.67%
Number of accept statements executed 1980
Number of select statements executed 820
Garbage collection in progress 87%
Real execution time (seconds) 68

Figure 26: Measurements of the POLY program on a single CP/AP pair.

operating system should provide to support similar languages. Two approaches can be taken. In one

approach, the operating system provides a basic set of abstractions without hiding the underlying

physical machine from the user. An example of such an abstraction is a process. The power of the

physical processor should not be restricted by the process abstraction [29]. If the user decides to

implement his own abstractions, he will have the power and efficiency of the physical machine at his

disposal. The lack of interrupts in Medusa is an example of a violation of this principle. If interrupts

were available, we could have implemented the CP and AP together on a single processor. Without

interrupts, polling is necessary to detect when work is available for the CP. Whenever the low-level

machine is hidden, there is a danger of providing the "wrong" abstraction.

A second approach is to provide everything the user might need. In our case, this would require a

number of abstractions not commonly found in operating systems. First, we would want to separately

manipulate protected address spaces and processes to avoid the expense of allocating and

deallocating a protected address space when processes are created and destroyed. The process

descriptors should be accessible to the user so that a garbage collector could be implemented.

Alternatively, the system could provide its own garbage collection. Small, dynamically created

processes are necessary for an efficient AMPL implementation. There must be a flexible message-

passing system with an arbitrary number of ports per process and the ability to selectively wait on sets

of ports. Finally, this must all be as efficient as can be achieved by writing customized run-time

L . .. .
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routines, or the language implementor will probably reimplement the necessary facilities to achieve

better performance.

A pattern or style of programming was observed in the test programs. Nearly all of our AMPL

modules can be viewed as implementations of abstract types whose operations are invoked by

sending a message to a port. If we were to design another language for parallel processing, we would

attempt to use this as a basis for the language rather than message passing. The invocation of an

abstract operation would normally be implemented by sending a message, but the actual construction

of the message and its receipt would be hidden from the programmer. The compiler might then be

able to detect special cases where simple mechanisms could be substituted for the full-blown

message-passing scheme of AMPL. Section 2.5 gives an example of an optimization that a compiler

might select automatically.

The potential for parallelism increases as we decompose a problem into more and finer operations.

At some point, the overhead of invoking an operation becomes the an important factor. A computer

architecture and run-time system might be developed to execute languages efficiently. In AMPL,

messages are constructed by processes and delivered to a CP. There, the message header must be

interpreted and the destination port located. When the message is finally accepted by the destination

process, it is again interpreted, this time by user-written code, and some appropriate operation is

performed. More work is needed to discover how this sequence of operations can be optimized.

Work by Spector (32] and Nelson [26] gives encouraging evidence that we are just beginning to learn

how to efficiently use computer networks and that large performance improvements can be obtained

once critical functions are identified.

Although we had no problems in constructing programs with correct synchronization, none of our

larger test programs were free of errors. Debugging a parallel AMPL program is considerably more

difficult than debugging a sequential one. Since no memory is shared, it is difficult for any one

process to determine much about the global state of the program. For example, when debugging the

PDE program, we wanted to print snapshots of the grid to help locate a bug. Unfortunately, the grid is

spread across several slaves, so the cooperation of several processes would be required to access it.

New ports would have to be added to each slave to request access to the grid. Another problem is

caused by the parallelism. For example, it is sometimes helpful to trace program execution by

printing values of variables at run-time. Because of parallelism in AMPL, if several processes begin

printing at the same time, output become hopelessly mixed up. Ordinarily, a collection of related

debugging information must be packaged into a single message and sent to a printer process which

formats and prints the data in a readable fashion. Obviously, more debugging aids are necessary. A
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symbolic debugger which could access all processes and monitor all messages would be a great

help. There is also a need for methodologies which enable programmers to transform sequential

programs into parallel ones. Most of the test programs we wrote are essentially sequential programs

with a few simple modifications to subdivide and distribute the program. It would be nice to debug the

sequential parts of the programs on sequential machines and to be able to take existing sequential

algorithms and transform them to parallel programs.

The problems of storage allocation have been avoided to a large extent in the design of AMPL. An

efficient implementation of a production language would require further investigation of the storage

allocation problem. In particular, there may be special cases where modules can be represented with

little memory overhead. In AMPL, message queues are allocated statically within process frames.

Dynamic allocation might conserve memory and allow the accept statement to be implemented by

changing pointers rather than by copying the message. Storage allocation is another area where a

reduced overhead may allow finer grain processes and a higher degree of parallelism. Methods for

efficiently allocating process frames are described in [25]. Using microcode support, process and

procedure frames can be allocated from a heap with a very small overhead.

The problem of code location has been avoided in our AMPL implementation. Every processor has

a complete copy of the compiled AMPL program. Memory could be used more efficiently if code

could be placed in processors only as needed. Further efficiency is obtained when processes are

located so that the number of copies of code is reduced. This savings must be balanced against the

potential reduction in parallelism due to the choice of process locations.

Our experiments have indicated that a high degree of parallelism can be achieved in AMPL

programs. The language supports the construction of parallel programs by providing high-level

mechanisms (messages) for process synchronization and communication. By disallowing shared

memory, we simplify the task of distributing processes and data while maintaining a low cost of

communication. Our implementation presents a structure using separate orocessors for

communication and program execution which provides further parallelism by overlapping

communication and program execution.
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I. Synchronization of relaxation algorithms

Consider a number of processes, each of which operates on a partition of a distributed data

structure. The task of the processes is to transform the structure into one that satisfies some global

constraint. The global constraint is satisfied when a local constraint is satisfied by each partition of

the data structure, and all communication between processes has completed.

We have found two examples of this sort of parallel computation. One is the PDEA program. Here,

the global constraint is specified by the finite difference equations. The global data structure is the

grid, and slices of the grid form the partition. The local constraint is that the finite difference equation

is satisfied by the local slice of the grid. The requirement that communication between processes

completes insures that the difference equations are satisfied across slice boundaries.

Another example is the scan phase of the parallel garbage collector. Here, the system-wide heap

memory is the global data structure, and the constraint to be satisfied is that all reachable objects are

marked. The local constraint is that there are no pending requests to mark local objects, and a mark

request has been sent for each reference in a locally marked object.

To illustrate the problem, we will first describe a simple but incorrect "solution":

Whenever local constraints are satisfied, send a done message to a globally known
process. When this process receives a done message from each of the cooperating
processes, then the global constraint is satisfied.

The problem with this approach is that local cci'traints may become not satisfied due to the actions

of some other process. Only after all local constraints are satisfied and all communication between

processes has terminated can we conclude that local constraints will remain satisfied.

Now, suppose a not done message is sent to the globally known process whenever it is detected

that a local constraint has become not satisfied. This leads to a race condition, where correct

synchronization depends upon relative speeds of computation and communication. Dijkstra has

proposed a solution to this problem [11]. In Dijkstra's solution, synchronization overhead is incurred

every time processes communicate. The PDEA program performs the synchronization correctly and

has the property that no synchronization messages are sent by a slave until the first time its local

constraints are satisfied, i.e. the slice values have converged and no messages from other slaves

have arrived. This algorithm is described below.

When a slave process operating on a slice of the grid detects local convergence, it sends its index
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and status (converged or not converged) to the master process, which is known to all the slaves. If a

slave must perform further iterations after sending a converged status to the master, it sends a not

converged status message before proceeding. The master keeps a count of how many slaves have

converged. When this count reaches the number of slaves, the master asks all slices to confirm that

they are still in the converged state.

If a slave's status is still converged when the confirm request arrives, the slave sends a confirm

reply to the master. If the master receives replies from all slaves, global convergence has been

achieved. On the other hand, if a slave changes status to not converged, then it will send a new

status message to the master. Some care must be taken to assure that this status change will be

detected and sent to the master before a reply can be made to a confirm request. Upon receiving a

status message of not converged, the master decrements its counter, and ignores replies to the last

confirm request message. Eventually, the counter will again reach the number of slaves. The master

will send another confirm request message to each slave and await the replies. A unique key is used

with each set of confirm request messages to distinguish replies. The structure of the slave program

is given in Figure 1. The complete PDEA program is listed in Appendix 111.3.

initialization of variables
converged: = False
while true do

if not converged and there are no messages then
perform one iteration, setting converged
if converged then

send done to master
else send new edges to neighbors

end
else

select
when no edge messages present accept confirm message do

if converged then send response to master end
end

accept edge message do
if converged and new edge 0 old edge then

send not done to master
converged: = False
update old edge
end

end
end

end
end

Figure 1: Structure of the slave program.
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To show that this algorithm is correct, consider the sequence of events which must occur before

the master detects global convergence. First, all slaves must achieve local convergence and send

their status to the master. The master then sends requests to each slave. Then, each slave must

send a reply to the master. Suppose there are N slaves and the master's counter contains N, but not

all slaves have converged. It must be the case that a slave has not yet detected that a new message

has caused it to become not converged.

The new message must have been sent before the last converged status message was sent to the

master. AMPL send semantics guarantee that the new message is delivered before the last status

message. Slaves give lowest priority to confirmation requests, so the new message is received before

the confirmation request. Since the new message causes a status change, a status of not converged

is sent to the master before the confirmation request is answered. The master receives status reports

and confirmation replies in order, so the status of not converged will be received by the master before

it can receive N confirmation replies. Therefore, the receipt of N replies indicates that the slaves have

in fact converged, and all communication between slaves has completed.

Another way to view this algorithm is in terms of time delays. The slave processes send status

reports to the master, but there is a time delay between the point at which status changes and the

time at which the master is informed of the change. If all slaves report convergence to the master,

and no reports to the contrary are received within he time required for the changes to be reported,

then the master can safely assume that all the slaves have fin;shed. To make sure that the master
waits long enough, a set of confirm reqvests are sent to the slaves. The time taken for all slaves to

reply to these requests is longer than the time required to detect and report a status change.

This is a complicated algorithm, but the savings can be large. The extra confirmation step lows

cooperating processes to communicate without special synchronization until local convergence is

obtained.
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II. Matrix multiplication analysis

In the MATR program, the number of slaves was varied while the partitioning of the matrices into

submatrices was held constant. Here, we consider the effect of changing the partition. Call the two

matrices to be multiplied A and B. The matrices A and B are assumed to be N by N and are partitioned

as shown in Figure 1. Matrix A has submatrices with dimensions N/q by N/r. Submatrices of B. have

dimensions N/r by N/s.

r s

A= B

q r

Figure 1: Two partitioned matrices.

The multiplication algorithm is:

Send pairs of submatrices from A and B to a multiplication process. Send the submatrix
products to a result process which performs submatrix additions to form the final product.

For example, let
A - S T and B - W X

UV YZ,

where S through Z are submatrices. Multiplication processes are used to compute the following

subproducts:
SW, TY, IU, VY, SX, TZ, UX, VZ

These subproducts are combined by the result process to form:

SW + TY SX + TZ

UW + VY UX + VZ

which is the product of A and B.

The communication cost is defined as the amount of data sent from A and B to slaves, plus the data

sent from slaves to the result process. The unit of measure is the number of bits required to represent

a single matrix element. Sparse matrices and variable length encodings of matrix elements are not

considered.
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The potential parallelism is determined by the number of submatrix multiplications. If the

submatrices are small, the result process co!.Id become a bottleneck, limiting the effective

parallelism. In this case, a more elaborate algorithm could be developed using multiple adder

processes. this would not affect the communication cost or potential parallelism derived from our

simpler model.

11.1 Potential parallelism

The number of subproduct multiplications, thus the potential parallelism, is qrs. In the special case

where submatrices have dimensions 1 by 1 (corresponding to the conventional matrix multiplication

algorithm), we have q = N, r = N, s = N, and qrs = N3. The result process must perform only O(rN2)

additions, while slaves perform a total of N3 multiplications, so the relative amount of work performed

by the result process is proportional to r, and inversely proportional to N.

11.2 Communication cost

The size of submatrices in A is N2/qr. The size of submatrices in B is N2/rs. The total number of

matrix elements sent to the slaves is

pqr(N2/qr + N2/rs) = (s + q)N2

The size of submatrix products are N2/qs so qrs(N2/qs) elements are sent from slaves to the result

process. Therefore, the total communication cost is simply:

(q + r + s)N2
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III. Selected program listings

111.1 SNDS

module MAIN;
port

answer: boolean;
howmany: integer;

var
b: boolean;
i: integer;

begin
while TRUE do

send 'Enter number of sends: ' to WrStr;

send self.howmany to Rdlnt;
accept howmany(i);
while i > 0 do

send TRUE to self.answer;
accept answer(b);
i:= i-1
end

end
end
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111.2 GC

const
CreateCmd 1 ;
DestroyCmd =2;

module main;
po rt

CommandPort: integer,
var

I. integer;
Command: integer;
NewMod:- refmod DummyMod;

begin
while TRUE do

send 'Command: (1) create (2) destroy' to WrStr;
send Self. CommandPort to Rdlnt;
accept CommandPort(Command);
if Command = CreateCmd then

send 'How many creates:' to WrStr;
send Self. CommandPort to Rdlnt;
accept CommandPort();
while 1>0do

NewMod: = create (DummyMod);
* I:= - 1;
* end;

send 'created' to WrStr;
end;

if Command = DestroyCmd then
NewMod. = NIL;
send 'destroyed' to WrStr,
end;

send 1 to WrLn;
end

end;

module DummyMod,
port IP.: integer,
var 1: integer,
begin

accept IP(I) [indefinite wait)
end



82

111.3 PDEA

{PDEA)

const ColPerSice a6;

NSlices = 8;
NS/icesPlusl - 9;
Nrows = 34;
UNITY =1000; {for fixed paint simulation)

typeSiceType = array [I.. ColPerS/ice] of ColType;
CalType =array (I1. Nrows] of Integer;
CoIRet refport CalType;
Neighbors Type = record Left, Right: CoIRef end;
ReportType = record From: integer;

Cycles: integer;
lsDone: boolean end;

RefReportType = refpo it ReportType;
Reftnt = refport Integer;
RefMain =refmod Main;
KeyType integer,

module SliceMod(myindex: integer; master: Ref Main);
po rt

StartUp: NeighborsType;
Lettin: ColType(2);
Rightln: CalType (2);
Confirm: KeyType;

var
slice: SliceType; {part of grid)
column: CalType; [receives data from Leftln, Rightin)
status: ReportType; {sent to master after each iteration)
nghbrs: Neighbors Type;
temp: integer; (new value for grid)
delta: integer; [change in grid value)
change, converged: boolean;
row,co01: integer;
key: KeyType;

begin
col: =1; (initialization: edges get 1, center gets 0)
while col <(= ColPerSlice do

slice fcol]f 1): = UNITY; (row 1)
row: = 2; {rows 2 thru Nrows- I
while row < Nrows do

slice~col)(row): v 0;
row:= row + 1
end;

slice~col][Nrows): UNITY; [row Nrows)
colt: col + 1;
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end;

{special case for left slice)
if myindex 1 then {fill in left edge)

row:: 1;
whilerow<'= Nrowsdo

slice[lf[row]: = UNITY;
row:: row + 1
end

end;

{special case for right slice)
if myindex = Nslices then {fill in right edge)

row: = 1;
while row (: Nrows do

slice[ColPerSlicellrow : UNITY;
row:= row + 1;
end

end;

accept StartUp(nghbrs);
status.From: = myindex;
status.IsDone:= FALSE;
statuscycles:: 0 ;
converged -= FALSE; {force first iteration)
while TRUE do

if not (converged or ready(Leftln) or ready(Rightln) or ready(Confirm))
then {perform one iteration)

converged: z TRUE;
col : z 2;
while col < ColPerSlice do

row:= 2;
while row < Nrows do

temp: = (slice[col+ 1][rowi + slice[col-1][row] +
slicefcol]frow-l] + slice[col][row + 11 + 2)14;

delta : = temp - slicefcol/[row];
slicelcol][row: z temp;
if delta 0 0 then converged: FALSE end;
row:= row + 1
end;

col:= co/ + 1
end;

status.Cycles:= status.Cycles + 1;
if converged then

status.lsDone: = converged;
send status to master.report;

else

if myindex > 1 then
send slice[2 to nghbrs.Left end;
if myindex < Nslices then

?A S . .
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send slice(ColPerSlice- 11 to nghbrs.Right end;
end;

else
select

accept Leftln(column) then co/: = 1 end;
accept Rightln(column) then col: = ColPerSice end;
when not ready(Leftln) and not ready(Rightln)
accept Confirm(key) then

if converged then
send key to master.confirm
end;

col: z 0
end {accept)

end; {select)
if col ( 0 then {new column)

row:= 1;
change:= FALSE;
while row < z Nrows and not change do

if Slice[coll[row] 0 column[row] then change: = TRUE end;
row:= row + 1
end;

if change then
if status.lsDone then

status.lsDone: = FALSE
send status to master.report
end;

Slice[col]: = column;
converged: FALSE
end

end
end

end {while loop)
end; (module)

module main;
port

(Report: ReportType(2);

Confirm: FeyType(2));
IntPort: Integer(l);

var
k integer;
converged: boolean;
cycles: array [1 .. NSlices] of integer;
slices: array [0.. NSlicesPlusl] of refmod SliceMod
Ndone, Nconfirmed: integer;
ConfirmKey: KeyType;
nghbrs. NeighborsType;
r: ReportType;



85

begin
l:= 1;

while I < NSlices do
Slices[ II: = create(SliceMod, I, Self);
cycles[): 0;
I:= I= + end;

send Self. IntPort to Rd/nt; {delay start until terminal input)
accept IntPort(I);

I= 1;
while I < = NSlices do

nghbrs.L. t:= slices[I-1l.Rightln;
nghbrs.Right: = slices[/ + l].Leftln;
send nghbrs to slices[I].StartUp;
I: = I + lend;

converged: = false;
ConfirmKey: = 0;
while not converged d-

select
accept Report(r) then

cycles[r.From] : = r.cycles;
if r.lsDone then Ndone: = Ndone + 1 else Ndone : = Ndone - 1 end;
if Ndone = Nslices then

ConfirmKey: = ConfirmKey + 1;
I:= 1;

while / < = Nslices do
send ConfirmKey to Slices[l].Confirm;
1:= /+ lend

else Nconfirmed : = 0 end;
end;

accept Confirm(I) then
if P - ConfirmKey then Nconfirmed : = Nconfirmed + 1 end;
if Nconfirmed = Nslices then converged: = TRUE end
end

end
end;

send 'PDE completed:' to WrStr: send 2 to WrLn;
send 'SLICE # ITERATIONS' to WrStr, send 1 to WrLn;
I:: 1;
while I < = Nslices do

send I to Wrlnt;
send' ' to WrStr
send cycles[] to Wrint;
send 1 to WrLn;
1:= I+ lend

end


